共查询到20条相似文献,搜索用时 15 毫秒
1.
Ikeda T Asakawa M Miyake K Goto M Shimizu T 《Langmuir : the ACS journal of surfaces and colloids》2008,24(22):12877-12882
In this paper, we reveal that the free-base and zinc strapped porphyrins possessing long alkyl chains, C 24OPP-HQ and Zn(C 24OPP-HQ), respectively, can be arranged on surfaces. We used scanning tunneling microscopy (STM) to observe alkyl-chain-assisted self-assembled monolayers (SAMs) of these strapped porphyrins at the solid-liquid interface. STM images revealed that the strapped benzene moiety was detectable on the porphyrin core: that is, the strapped porphyrins could be differentiated from nonstrapped analogues. We compared the population of the nonstrapped porphyrin (C 24OPP) and either of the strapped porphyrins C 24OPP-HQ or Zn(C 24OPP-HQ) in the mixed SAMs. We then confirmed that Zn(C 24OPP-HQ) is more favorably incorporated in the mixed SAMs than C 24OPP-HQ. From (1)H NMR spectroscopic and X-ray crystallographic analyses, we concluded that the factors increasing the population of Zn(C 24OPP-HQ) in the mixed SAMs are the enhanced rigidity of the porphyrin core by the zinc coordination and the flat structure of the porphyrin moiety in the saddle conformation. This study demonstrates that strapped porphyrins possessing long alkyl chains are available to arrange the functional modules on the surface via chemical modification on the strapped moiety. 相似文献
2.
Scanning tunneling microscopy of self-assembled phenylene ethynylene oligomers on Au(111) substrates 总被引:1,自引:0,他引:1
Walzer K Marx E Greenham NC Less RJ Raithby PR Stokbro K 《Journal of the American Chemical Society》2004,126(4):1229-1234
In this paper, we report the self-assembly, electrical characterization, and surface modification of dithiolated phenylene-ethynylene oligomer monolayers on a Au(111) surface. The self-assembly was accomplished by thiol bonding the molecules from solution to a Au(111) surface. We have confirmed the formation of self-assembled monolayers by scanning tunneling microscopy (STM) and optical ellipsometry, and have studied the kinetics of film growth. We suggest that self-assembled phenylene ethynylene oligomers on Au(111) surfaces grow as thiols rather than as thiolates. Using low-temperature STM, we collected local current-voltage spectra showing negative differential resistance at 6 K. 相似文献
3.
Scanning tunneling microscopy was used to investigate the reaction of octanethiolate self-assembled monolayers (SAMs) with atomic chlorine. We have found that exposing a SAM to low fluxes of radical Cl results primarily in the formation of new defects in areas with close-packed alkanethiolates, but has little to no effect on the domain boundaries of the SAM. Dosing high quantities of atomic chlorine results in the near-complete loss of surface order at room temperature, but not the complete removal of the thiolate monolayer. These observations are in stark contrast to the results of previous measurements of the reaction of atomic hydrogen with alkanethiolate SAMs. 相似文献
4.
Terzi F Seeber R Pigani L Zanardi C Pasquali L Nannarone S Fabrizio M Daolio S 《The journal of physical chemistry. B》2005,109(41):19397-19402
In this article the adsorption of 3-methylthiophene on planar and nanoparticle Au surfaces is investigated. The resulting systems are compared with a benchmark system based on 1-decanethiol. The characterization data collected evidence the formation of a packed 3-methylthiophene SAM on the planar surface. In particular, spectroscopic investigations suggest that 3-methylthiophene aromatic system is not adsorbed on the surface through the pi-electron system but rather through the S atom alone. On the other hand, the behavior of 3-methylthiophene on nanoparticle surfaces is notably different from that of the alkanethiol. Only a limited fraction of the surface of Au nanoparticles results to be actually coated after purification; this notwithstanding, the nanoparticle growth seems to be strongly influenced by the presence of such a labile encapsulating agent. 相似文献
5.
6.
粘胶基碳纤维表面结构的STM研究 总被引:1,自引:0,他引:1
本文建立了用具有原子级分辨能力的扫描隧道显微镜 (STM)研究粘胶基碳纤维 (RCF)表面结构的方法。在较大尺度的STM图像上 ,RCF表面显得很粗糙 ,“峰”和“谷”的特征非常明显。增大放大率时 ,发现了约10nm宽的条状结构 ,其排列与纤维轴成一定角度 (45°~ 90°)。首次获得了RCF原子级的STM图像 ,在原子级尺度上 ,其原子排列并不规则 ,相邻原子间距为 0 .14 2nm ,最近六元环中心的距离是 0 .2 5 3nm。与高定向降解石墨 (HOPG)的对比研究进一步表明RCF表面的碳网是变形的六元环结构 相似文献
7.
8.
Yuan QH Yan CJ Yan HJ Wan LJ Northrop BH Jude H Stang PJ 《Journal of the American Chemical Society》2008,130(28):8878-8879
Spontaneous symmetry-breaking of a racemic mixture of supramolecular triginal prisms into chiral domains on a Au(111) surface is observed by scanning tunneling microscopy (STM). High-resolution STM analysis enables the structural aspects of each enantiomeric domain to be elucidated. The ability to resolve chirality on achiral surfaces has potential applications in heterogeneous stereoselective synthesis and catalysis. 相似文献
9.
The mechanical interaction between a scanning tunneling microscopy (STM) probe and hexadecane (C16) alkylthiol molecules in a self-assembled monolayer was investigated by sensing the force during constant current mode STM imaging. The force regime changed from attractive to repulsive over the insulating molecule islands under feedback control of the current. The repulsive force on the molecule was strongly dependent on the setpoint value of the current during STM operation. In our experiments, the threshold for contact was found at a tunneling current of 1 pA when the sample bias is 2 V. At higher current, the apparent height of molecular islands changed logarithmically with current. In addition, the current as a function of applied load revealed a stepwise increase, indicative of discrete molecular tilting events. A tunneling decay constant beta of =0.53+/-0.02 A(-1) was obtained based on the measurement of the height of molecules and the tunneling current. 相似文献
10.
Rolf Jürgen Behm 《Mikrochimica acta》1991,104(1-6):427-433
The use of scanning tunneling microscopy (STM) for atomic scale characterization of clean and adsorbate covered (single-crystalline) metal surfaces is discussed. Topographic images reveal details on their periodic structure and on the atomic arrangement in the surface layer, and in particular on surface defects. The observation and characterization of individual adsorbate species gives access to the local electronic structure of the adsorption complex and to details of the chemical bond between substrate and adsorbate. Atomic resolution imaging opens new perspectives for the investigation of various surface processes such as surface diffusion, thin film growth or surface reactions. 相似文献
11.
We focus our studies on DNA-chromophore motif on surfaces using samples prepared by the synthetic methods described by Wang and Li in a recent publication (J. Am. Chem. Soc. 2003, 125, 5248-5249). Scanning tunneling microscope (STM) was used to investigate the DNA-chromophore hybrids adsorbed on Au(111) and highly oriented pyrolytic graphite (HOPG) surfaces at room temperature in air. Experiments found that the DNA-chromophore hybrid molecules easily formed multimolecule aggregations on gold surface. On HOPG surfaces, however, DNA-chromophore hybrids were usually adsorbed as single molecules. STM images further showed DNA-chromophore hybrids adsorbed on Au(111) surfaces existed in the form of single molecule, dimer, trimer, tetramer, etc. The occurrence of molecular aggregations indicates that molecular interactions are comparable or stronger than molecule-substrate interactions; such weak interactions control the geometrical sizes and topographical shapes of the self-assembled DNA-chromophore hybrids on surfaces. 相似文献
12.
Choi Y Jeong Y Chung H Ito E Hara M Noh J 《Langmuir : the ACS journal of surfaces and colloids》2008,24(1):91-96
Self-assembled monolayers (SAMs) were formed by the spontaneous adsorption of octythiocyanate (OTC) on Au(111) using both solution and ambient-pressure vapor deposition methods at room temperature and 50 degrees C. The surface structures and adsorption characteristics of the OTC SAMs on Au(111) were characterized by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). The STM observation showed that OTC SAMs formed in solution at room temperature have unique surface structures including the formation of ordered and disordered domains, vacancy islands, and structural defects. Moreover, we revealed for the first time that the adsorption of OTC on Au(111) in solution at 50 degrees C led to the formation of SAMs containing small ordered domains, whereas the SAMs formed by vapor deposition at 50 degrees C had long-range ordered domains, which can be described as (radical3 x 2 radical19)R5 degrees structures. XPS measurements of the peaks in the S 2p and N 1s regions for the OTC SAMs showed that vapor deposition is the more effective method as compared to solution deposition for obtaining high-quality SAMs by adsorption of OTC on gold. The results obtained will be very useful in understanding the SAM formation of organic thiocyanates on gold surfaces. 相似文献
13.
Scanning tunneling microscopy and spectroscopy of wet-chemically prepared chlorinated Si111 surfaces
Chlorine-terminated Si(111) surfaces prepared through the wet-chemical treatment of H-terminated Si(111) surfaces with PCl5 (in chlorobenzene) were investigated using ultrahigh vacuum scanning tunneling microscopy (UHV cryo-STM) and tunneling spectroscopy. STM images, collected at 77 K, revealed an unreconstructed 1 x 1 structure for the chlorination layer, consistent with what has been observed for the gas phase chlorination of H-terminated Si(111). However, the wet-chemical chlorination is shown to generate etch pits in the Si(111) surface, with an increase in etch pit density correlating with increasing PCl5 exposure temperatures. These etch pits were assumed to stabilize the edge structure through the partial removal of the <112> step edges. Tunneling spectroscopy revealed a nonzero density of states at zero bias. This is in contrast to the cases of H-, methyl-, or ethyl-terminated Si(111), in which similar measurements have revealed the presence of a large conductance gap. 相似文献
14.
Alkanethiol self-assembled monolayers on Au(111) are widely studied, yet the exact nature of the sulfur-gold bond is still debated. Recent studies suggest that Au(111) is significantly reconstructed, with alkanethiol molecules binding to gold adatoms on the surface. These adatoms are observed using scanning tunneling microscopy before and after removing the organic monolayer with an atomic hydrogen beam. Upon monolayer removal, changes in the gold substrate are seen in the formation of bright, triangularly shaped islands, decreasing size of surface vacancy islands, and faceting of terrace edges. A 0.143 +/- 0.033 increase in gold coverage after monolayer removal shows that there is one additional gold adatom for every two octanethiol molecules on the surface. 相似文献
15.
Hoque E Derose JA Hoffmann P Mathieu HJ Bhushan B Cichomski M 《The Journal of chemical physics》2006,124(17):174710
Substrates of aluminum (Al) deposited by physical vapor deposition onto Si substrates and then chemically reacted with perfluorodecylphosphonic acid (PFDPAlSi), decylphosphonic acid (DPAlSi), and octadecylphosphonic acid (ODPAlSi) were studied by x-ray photoelectron spectroscopy (XPS), contact angle measurements, atomic force microscopy (AFM), and friction force microscopy, a derivative of AFM, to characterize their surface chemical composition, roughness, and micro-/nanotribological properties. XPS analysis confirmed the presence of perfluorinated and nonperfluorinated alkylphosphonate molecules on the PFDPAlSi, DPAlSi, and ODPAlSi. The sessile drop static contact angle of pure water on PFDPAlSi was typically more than 130 degrees and on DPAlSi and ODPAlSi typically more than 125 degrees indicating that all phosphonic acid reacted AlSi samples were very hydrophobic. The surface roughness for PFDPAlSi, DPAlSi, ODPAlSi, and bare AlSi was approximately 35 nm as determined by AFM. The surface energy for PFDPAlSi was determined to be approximately 11 mNm by the Zisman plot method compared to 21 and 20 mNm for DPAlSi and ODPAlSi, respectively. Tribology involves the measure of lateral forces due to friction and adhesion between two surfaces. Friction, adhesion, and wear play important roles in the performance of micro-/nanoelectromechanical systems. PFDPAlSi gave the lowest adhesion and coefficient of friction values while bare AlSi gave the highest. The adhesion and coefficient of friction values for DPAlSi and ODPAlSi were comparable. 相似文献
16.
Tang Y Yan J Zhu F Sun C Mao B 《Langmuir : the ACS journal of surfaces and colloids》2011,27(3):943-947
We investigate the structure of nonionic fluorosurfactant zonyl FSN self-assembled monolayers on Au(111) and Au(100) in 0.05 M H(2)SO(4) as a function of the electrode potential by electrochemical scanning tunneling microscopy (ECSTM). On Au(111), a (3(1/2) × 3(1/2))R30° arrangement of the FSN SAMs is observed, which remains unchanged in the potential range where the redox reaction of FSN molecules does not occur. On Au(100), some parallel corrugations of the FSN SAMs are observed, which originate from the smaller distance and the repulsive interaction between FSN molecules to make the FSN molecules deviate from the bridging sites, and ECSTM reveals a potential-induced structural transition of the FSN SAMs. The experimental observations are rationalized by the effect of the intermolecular interaction. The smaller distance between molecules on Au(100) results in the repulsive force, which increases the probability of structural change induced by external factors (i.e., the electrode potential). The appropriate distance and interactions of FSN molecules account for the stable structure of FSN SAMs on Au(111). Surface crystallography may influence the intermolecular interaction through changing the molecular arrangements of the SAMs. The results benefit the molecular-scale understanding of the behavior of the FSN SAMs under electrochemical potential control. 相似文献
17.
Electrical tunnel junctions consisting of alkanethiol molecules self-assembled on Au-coated Si substrates and contacted with Au-coated atomic force microscopy tips were characterized under varying junction loads in a conducting-probe atomic force microscopy configuration. Junction load was cycled in the fashion of a standard nanoindentation experiment; however, junction conductance rather than probe depth was measured directly. The junction conductance data have been analyzed with typical contact mechanics (Derjaguin-Müller-Toporov) and tunneling equations to extract the monolayer modulus (approximately 50 GPa), the contact transmission (approximately 2 x 10(-6)), contact area, and probe depth as a function of load. The monolayers are shown to undergo significant plastic deformation under compression, yielding indentations approximately 7 Angstroms deep for maximum junction loads of approximately 50 nN. Comparison of mechanical properties for different chain lengths was also performed. The film modulus decreased with the number of carbons in the molecular chain for shorter-chain films. This trend abruptly reversed once 12 carbons were present along the backbone. 相似文献
18.
Hakamada M Takahashi M Furukawa T Tajima K Yoshimura K Chino Y Mabuchi M 《Physical chemistry chemical physics : PCCP》2011,13(26):12277-12284
Desorption of thiolate self-assembled monolayers (SAMs) seriously limits the fabrication of thiol-based devices. Here we demonstrate that nanoporous Au produced by dealloying Au-Ag alloys exhibits high electrochemical stability against thiolate desorption. Nanoporous Au has many defective sites, lattice strain and residual Ag on the ligament surface. First-principles calculations indicate that these surface aspects increase the binding energy between a SAM and the surface of nanoporous Au. 相似文献
19.
A systematic scanning tunneling microscopy (STM) study of alkanethiol self-assembled monolayers (SAMs) is presented as a function of the bias voltage, tunneling current, and tip-termini separation. Stable and etch-pit free SAMs of close-packed undecanethiol/Au(111) were obtained after annealing in ultrahigh vacuum. STM revealed two distinct c(4x2) structures with four nonequivalent molecules per unit cell. For both structures, reversible contrast variations occur upon systematically tuning the bias voltage, the current, and the tip-termini distance. These contrast transitions originate from probing the corresponding local density of states (LDOS) of each molecule and not from the reorientation of the alkanethiol chains. The STM contrast is particularly sensitive to the tip-termini separation in the range of 0.5-2.5 A, reflecting the distance-dependence of LDOS. At a fixed tip elevation, the STM contrast is less sensitive to changes in bias within 0.1-1.2 V. For the first time, we demonstrate that LDOS may override the physical height variations in the STM topographic contrast for alkanethiol SAM systems. 相似文献
20.
Onclin S Ravoo BJ Reinhoudt DN 《Angewandte Chemie (International ed. in English)》2005,44(39):6282-6304
Although a molecular monolayer is only a few nanometers thick it can completely change the properties of a surface. Molecular monolayers can be readily prepared using the Langmuir-Blodgett methodology or by chemisorption on metal and oxide surfaces. This Review focuses on the use of chemisorbed self-assembled monolayers (SAMs) as a platform for the functionalization of silicon oxide surfaces. The controlled organization of molecules and molecular assemblies on silicon oxide will have a prominent place in "bottom-up" nanofabrication, which could revolutionize fields such as nanoelectronics and biotechnology in the near future. In recent years, self-assembled monolayers on silicon oxide have reached a high level of sophistication and have been combined with various lithographic patterning methods to develop new nanofabrication protocols and biological arrays. Nanoscale control over surface properties is of paramount importance to advance from 2D patterning to 3D fabrication. 相似文献