首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural studies of the high molecular weight (HMW) glutenin subunits 1Dy10 and 1Dy12 of bread wheat were conducted using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) and reversed-phase high-performance liquid chromatography/electrospray ionisation mass spectrometry (RP-HPLC/ESI-MS). For both proteins, MALDI-TOFMS analysis showed that the isolated fractions contained a second component with a mass about 500-540 Da lower than the major component. The testing and correction of the gene-derived amino acid sequences of both proteins were performed by direct MALDI-TOFMS analysis of their tryptic peptide mixture and analysis of the digests was performed by recording several MALDI mass spectra of the mixture at low, medium and high mass ranges, optimising the matrix and the acquisition parameters for each mass range. Complementary data were obtained by RP-HPLC/ESI-MS analysis of the tryptic digest. This resulted in the coverage of the whole protein sequences except for two short fragments (T1 and T8), which are identical in the two homologous subunits, and for an additional dipeptide (T14) in subunit 1Dy12, which were not detected. It also demonstrated that, in contrast to the gene-derived data, the sequence of subunit 1Dy12 does not include the dipeptide Gly-Gln between residues Gln(454) and Pro(455), and that the lower mass components present in both fractions correspond to the same sequences lacking short peptides that are probably lost from the protein N- or C-termini. Finally, the results obtained provide evidence for the lack of a substantial level of glycosylation or other post-translational modifications of the two subunits, and demonstrate that mass spectrometric mapping is the most useful method presently available for the direct verification of the gene-derived sequences of HMW glutenin subunits and similar proteins.  相似文献   

2.
Immunoreactivity and detection of wheat proteins by commercial ELISA kits   总被引:1,自引:0,他引:1  
Wheat proteins are responsible for sensitivities, including baker's asthma, immunoglobulin E (IgE)-mediated allergic reaction, wheat-dependent, exercise-induced anaphylaxis, and celiac disease. The detection of gluten/wheat traces in foods is important to safeguard the health of wheat-sensitive individuals and comply with food labeling. Many immunoanalytical-based commercial kits are available for the quantification of gliadin/gluten/wheat proteins. We compared the immunoreactivity of wheat fractions with wheat-allergic human serum IgE and antibody conjugates used in six commercial immunoassay kits. Moreover, the performance of the kits was tested using corn flour spiked with gluten (5, 10, 25, and 50 ppm) and wheat flour (50, 100, 250, and 500 ppm). The albumin, globulin, gliadin, and glutenin fractions reacted with IgE from nine, eight, two, and eight patients' sera, respectively, out of nine wheat allergic patients tested. Among the antibodies from commercial kits, those from R-Biopharm, Morinaga, and Romer Labs reacted strongly with the gliadin fraction, whereas those from BioKits, ALLER-TEK, and ELISA Systems reacted strongly with the glutenin fraction. All kits showed minimal or no reactivity with albumin and globulin fractions. All kits detected the gluten and wheat flour in a corn flour matrix at the lowest spiked levels of 5 and 50 ppm, respectively. However, there was wide variation among the kits when comparing the recovery of gluten and wheat flour. The recovery was also dependent on the source material (gluten or wheat flour) used for spiking the corn flour matrix.  相似文献   

3.
High‐molecular‐weight (HMW) coloured compounds called melanoidins are widely distributed, particularly in foods. It has been proposed that they originate through the Maillard reaction, a non‐enzymatic browning reaction, due to the interaction between protein or peptide amino groups and carbohydrates. The melanoidin structure is not definitively known, and they have been generally defined as HMW nitrogen‐containing brown polymers. In order to gain information on the nature of melanoidins, a simple in vitro model was chosen to investigate the products of the reactions between sugars and peptide/proteins. This approach would elucidate whether melanoidin formation is due to the binding of different sugar units to a peptide/protein or vice versa. With this aim, the reactivity of two different peptides, EPK177 and physalaemin, and a low‐molecular‐weight (LMW) protein, lysozyme, was tested towards different saccharides (glucose, maltotriose (MT), maltopentaose and dextran 1000) in aqueous solutions at different temperatures. The incubation mixtures were analysed at different reaction times by MALDI/MS. Furthermore, in order to verify the possible role of sugar pyrolysis products in melanoidin formation, the products arising from the thermal treatment at 200 °C of MT were incubated with lysozyme, and the reaction products were analysed by the same MS approach. The obtained results allowed the establishment of some general views: melanoidins cannot simply originate by reactions of sugar moieties with proteins. In fact, the reaction easily occurs, but it does not lead to any coloured product, as melanoidins have been described to be; melanoidins cannot originate from the thermal degradation products of glycated proteins. In fact, the thermal treatment of glycated lysozyme leads to a severe degradation of the protein with the formation of LMW species, far from the view of melanoidins as HMW compounds; experimental evidence has been gained on the melanoidin formation through reaction of intact protein with the pyrolysis products of MT. This hypothesis has been supported either from MALDI measurements or from spectroscopic data that show an absorption band in the range 300–600 nm, typical of melanoidins. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
We report covalent attachment via a thiol ester linkage of 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid or SA) to cysteine-containing protein biomarkers from bacterial cell lysates of E. coli analyzed by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry when using SA as the matrix. Evidence to support this conclusion is the appearance of additional peaks in the MS spectra when using SA, which are absent when using α-cyano-4-hydroxycinnamic acid (HCCA). The additional peaks appear at a mass-to-charge (m/z) ∼208 greater to the m/z of a more abundant protein ion peak. Protein biomarkers were identified by tandem mass spectrometry (MS/MS) using a MALDI time-of-flight/time-of-flight (TOF-TOF) mass spectrometer and top-down proteomics. Three protein biomarkers, HdeA, HdeB, and homeobox or YbgS (each containing two cysteine residues) were identified as having reactivity to SA. Non-cysteine-containing protein biomarkers showed no evidence of reactivity to SA. MS ions and MS/MS fragment ions were consistent with covalent attachment of SA via a thiol ester linkage to the side-chain of cysteine residues. MS/MS of a protein biomarker ion with a covalently attached SA revealed fragment ion peaks suggesting dissociative loss SA. We propose dissociative loss of SA is facilitated by a pentacyclic transition-state followed by proton abstraction of the β-hydrogen of the bound SA by a sulfur lone pair followed by dissociative loss of 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-ynal. The apparent reactivity of SA to cysteine/disulfide-containing proteins may complicate identification of such proteins, however the apparent differential reactivity of SA and HCCA toward cysteine/disulfide-containing proteins may be exploited for identification of unknown cysteine-containing proteins.  相似文献   

5.
Rheological properties of wheat gluten as a function of the presence of free sulfhydryls and disulfide bonds in addition to their ratio during various conditioning regimes were studied. It was shown that coagulation of the gluten as the temperature increased was accompanied by a decrease in the number of free sulfhydryls and an increase in the number of rheologically active disulfide bonds. Changes occurring in the gliadin and glutenin fractions during various conditioning regimes were seen using IR spectroscopy. It was found that the relative strength of absorption bands due to H-bonds increased as the treatment temperature was raised above 60°C. Significant changes in the protein molecule structure that caused substantial changes in its rheological properties because of thiol–disulfide exchange reactions and H-bond strength occurred during the conditioning.  相似文献   

6.
Gliotoxin is produced by non-ribosomal peptide synthesis and secreted from certain fungi, including Aspergillus fumigatus. It is an epipolythiodioxopiperazine that contains an intact disulphide bridge and is the focus of intense research as a consequence of its negative immunomodulatory properties. Gliotoxin detection is generally enabled by reversed-phase–high-performance liquid chromatography (RP-HPLC), with absorbance detection (220–280 nm), or liquid chromatography-mass spectrometry, yet detection is not readily achievable by matrix-assisted laser desorption ionisation–time-of-flight mass spectrometry (MALDI-ToF MS). We have developed a single-pot derivatisation strategy which uses sodium borohydride-mediated reduction of gliotoxin followed by immediate alkylation of exposed thiols by 5′-iodoacetamidofluorescein to yield a stable product, diacetamidofluorescein-gliotoxin (GT-(AF)2), of molecular mass 1103.931 Da ((M + H)+). This product is readily detectable by RP-HPLC and exhibits a 6.8-fold increase in molar absorptivity compared with gliotoxin, which results in a higher sensitivity of detection (40 ng; 125 pmoL). GT-(AF)2 also fluoresces (excitation/emission, 492:518 nm). Unlike free gliotoxin, the product (>800 fmol) is detectable by MALDI-ToF MS. Sporidesmin A can also be detected by RP-HPLC and MALDI-ToF MS (>530 fmol) using this strategy. We also demonstrate that the strategy facilitates detection of gliotoxin (mean ± SD = 3.55 ± 0.07 μg 100 μL−1; n = 2) produced by A. fumigatus, without the requirement for organic extraction of culture supernatants and associated solvent removal. GT-(AF)2 is also detectable (150 ng; 460 pmol) by thin-layer chromatography.  相似文献   

7.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI–TOF MS) has been proved to be a powerful tool for the identification and characterization of microorganisms based on their surface peptide/protein pattern. Because of the complexity of microorganisms, there are no standardized protocols to acquire reproducible peptide/protein profiles for a broad range of microorganisms and for fungi in particular. Small variations during MALDI MS sample preparation affect the quality of mass spectra quite often. In this study, we were aiming to develop a sample preparation method for the analysis of colored, a quite often observed phenomenon, and mycotoxin-producing Fusarium conidia spores using MALDI–TOF MS. Different washing solvent systems for light- and deep-colored (from slightly orange to red-brown) conidia spores and connected sample deposition techniques were evaluated based on MS reproducibility and number and intensities of peaks. As a method of choice for generation of reproducible and characteristic MALDI–TOF mass spectra, the use of a washing process for colored Fusarium conidia spores with acetonitrile/0.5% formic acid (7/3) was found and subsequently combined with two-layer volume technique (spores/matrix (ferulic acid) solution was deposited onto a MALDI target, and after solvent evaporation, a second matrix layer was deposited). With the application of this sample preparation method, for deep-colored Fusarium species, 19 abundant molecular ions in the m/z range 2,000–10,000 were always detected with an S/N ratio of 3:1 or better. Finally this optimized sample preparation for the first time provided mass spectrometric fingerprints of strongly colored Fusarium conidia spores resulting in the possibility of differentiation of such spores at the species level.   相似文献   

8.
We report on the characterization by mass spectrometry (MS) of a rapid, reagentless and site-specific cleavage at the N-terminus of the amino acid cysteine (C) in peptides and proteins induced by the thermal decomposition at 220–250 °C for 10 s in solid samples. This thermally induced cleavage at C occurs under the same conditions and simultaneously to our previously reported thermally induced site-specific cleavage at the C-terminus of aspartic acid (D) (Zhang, S.; Basile, F. J. Proteome Res. 2007, 6, (5), 1700–1704). The C cleavage proceeds through cleavage of the nitrogen and α–carbon bond (N-terminus) of cysteine and produces modifications at the cleavage site with an amidation (−1 Da) of the N-terminal thermal decomposition product and a −32 Da mass change of the C-terminal thermal decomposition product, the latter yielding either an alanine or β-alanine residue at the N-terminus site. These modifications were confirmed by off-line thermal decomposition electrospray ionization (ESI)-MS, tandem MS (MS/MS) analyses and accurate mass measurements of standard peptides. Molecular oxygen was found to be required for the thermal decomposition and cleavage at C as it induced an initial cysteine thiol side chain oxidation to sulfinic acid. Similar to the thermally induced D cleavage, missed cleavages at C were also observed. The combined thermally induced digestion process at D and C, termed thermal decomposition/digestion (TDD), was observed on several model proteins tested under ambient conditions and the site-specificity of the method confirmed by MS/MS.  相似文献   

9.
Commercial wheat gluten (WG) films, hard wheat gluten films and soft wheat gluten films, plasticized with glycerol have been cast from water–ethanol solutions. The effect of aging on various film properties has been investigated. The films were aged for about 6 months at 50% relative humidity and ~25 °C, and the mechanical (tensile strength and the percentage of elongation at break (E b)), thermal (TG and DSC) and Attenuated Total Reflectance (ATR)-FTIR spectral properties have been studied. Changes in the protein structure were determined by ATR-FTIR spectroscopy. Films from soft WG exhibited the highest E b (508%) and the highest TS (6.33 MPa). The TG analysis results show that the moisture content in all three kinds of WG protein films is about 5%. The absence of the glycerol phase transition in DSC curves implies that there is no separate phase containing glycerol in the WG protein-glycerol films with 40% glycerol.  相似文献   

10.
Summary The wheat maturation process was monitored by high-performance capillary electrophoresis. The different protein components of the albumin, globulin, gliadin and glutenin fractions from the Osborne extraction procedure were analysed. The wheat sample was a Hungarian winter wheat, cultivar Martonvásári 23. The protein fractions were analysed by capillary zone electrophoresis using a low pH phosphate buffer containing a polymeric additive and organic modifiers. The albumins and gliadins as well as glutenins showed a characteristic pattern of development during the maturation process. For these fractions the development occurred at different stages of maturation. The formation of protein fractions of wheat at different stages of maturation—and thus the entire maturation process—could be well characterised by high-performance capillary electrophoresis. Presented at Balaton Symposium on High Performance Separation Methods, Siófok, Hungary, September, 1–3, 1999  相似文献   

11.
Celiac disease (CD) is a permanent gastrointestinal disorder characterized by the intolerance to a group of proteins called gluten present in wheat, rye, barley, and possibly oats. The only therapy is a strict lifelong gluten-free diet. The standard method for gluten determination in foods produced for CD patients is the R5-enzyme-linked immunosorbent assay (ELISA) as proposed by the recent Codex Alimentarius Draft Revised Standard. This test is based on the determination of prolamins, the alcohol-soluble proteins of gluten, and is available as a sandwich ELISA for intact proteins and as a competitive ELISA for gluten-derived peptides. While the suitability of the sandwich ELISA including a wheat prolamin (gliadin) reference for calibration has been shown by various studies and a ring test, the competitive ELISA still lacks a convenient reference for the quantitation of gluten peptides in fermented cereal foods (e.g., sourdough products, starch syrup, malt extracts, beer). Therefore, the aim of the present study was to prepare a suitable reference for the quantitation of partially hydrolyzed gluten in fermented wheat, rye, and barley products. The prolamin fractions from barley (hordein) and rye (secalin) were isolated from corresponding flours by means of a modified preparative Osborne fractionation. The prolamin fraction from wheat was obtained as reference gliadin from the Prolamin Working Group. The prolamin fractions were successively digested by pepsin and trypsin or pepsin and chymotrypsin procedures, which have been used for CD-specific toxicity tests on cereal storage proteins for many years. The protein/peptide content (N × 5.7) of the prolamin fractions and digests, which was the basis for the calculation of the gluten content by means of ELISA, varied between 67.1% and 96.0%. The prolamin fractions and enzymatic digests were then tested for their response in both sandwich and competitive assays. Intact prolamins responded similarly in both ELISA showing no important differences between the cereals. In the case of digested proteins, however, the sandwich ELISA was considerably less sensitive than the competitive ELISA. The former provided approximately 40% and the latter 70% of the signal intensity obtained with the intact prolamins. Thus, the combination of the competitive ELISA and the enzymatic digests of prolamin fractions as reference was considered to be an adequate system for the analysis of partially hydrolyzed gluten. The limit of detection using a peptic-tryptic hordein digest as reference was 2.3 μg prolamin equivalent per milliliter, and the limit of quantitation was 6.7 μg prolamin equivalent per milliliter. This system was applied for the determination of gluten equivalents in five commercial beverages based on fermented cereals.   相似文献   

12.
Ammonium sulphate cut protein extracts, and their pepsin hydrolysates, from the rhizomes of 15 plants in the Zingiberaceae family were screened for their in vitro angiotensin I-converting enzyme inhibitory (ACEI) activity. The protein extract from Zingiber ottensii had the highest ACEI activity (IC50 of 7.30 × 10−7 mg protein/mL) and was enriched for by SP Sepharose chromatography with five NaCl step gradients 0, 0.25, 0.50, 0.75 and 1 M NaCl collecting the corresponding five fractions. The highest ACEI activity was found in the F75 fraction, which appeared to contain a single 20.7-kDa protein, suggesting enrichment to or near to homogeneity. The ACEI activity of the F75 fraction was moderately thermostable (−20–60 °C), showed >80% activity across a broad pH range of 4–12 (optimal at pH 4–5) and appeared as a competitive inhibitor of ACE (K i of 9.1 × 10−5 mg protein/mL). For the pepsin hydrolysates, that from Zingiber cassumunar revealed the highest ACEI activity (IC50 of 0.38 ± 0.012 mg/mL), was enriched to a single active hexapeptide by RP-HPLC with a strong ACEI activity (IC50 of 0.011 ± 0.012 mg/mL) and acted as a competitive inhibitor of ACE (K i of 1.25 × 10−6 mg protein/mL).  相似文献   

13.
In the present study, we address the possibility of matrix-assisted laser desorption/ionization (MALDI)–time-of-flight MS analysis-induced chain fragmentation in poly(p-phenylene terephthalamide) (PPD-T) by considering two possible sources: (1) grinding-induced fragmentation resulting from the evaporation–grinding MALDI sample preparation method (E-G method) and (2) in-source/metastable fragmentation induced by the MALDI laser. An analysis of variance (ANOVA) statistical study found, with a high probability, that obtaining MALDI spectra with the effective laser area as large as possible (the “fanned-out” setting) did not cause any chain fragmentation due to the E-G MALDI sample preparation method, even when three additional grinding steps were used. However, the effect of laser fluence was less clear. A significant effect of laser fluence was observed for lower mass oligomers (<1,400 Da), but there was essentially no effect for higher mass species up to our limit of ANOVA measurement (∼2,300 Da). Plausible explanations are presented to explain these observations. The most likely scenario is that “unexpected” end-group modifications occur during PPD-T synthesis, producing small quantities of low mass species, which are amplified by the MALDI-EG extraction procedure.  相似文献   

14.
Wheat high molecular weight glutenin subunit variation is important because of its great influence on glutenin polymer structure, that is related to dough technological properties. Among the different subunits, the pair Bx20 and By20 is known to have a negative effect on quality, but the reasons are not clear: Bx20 has two cysteines, which theoretically make this subunit a chain extender of the glutenin polymer, just like the other Bx subunits, showing four cysteines, two of which should be involved in intra‐molecular disulfide bonds. By20 has never been characterized so far at molecular level. Here we report the nucleotide sequences of Bx20 and By20 genes isolated from the durum wheat cultivar ‘Lira 45’ and the validation of the corresponding deduced amino acid sequences by using MALDI‐TOF and LC‐MS/MS. Four nucleotide differences were identified in the Bx20 gene with respect to the deduced sequence present in NCBI, causing two amino acid substitutions. For the By20 subunit, nucleotide and amino acid sequences revealed a great similarity to By15, both at gene and protein levels, showing five nucleotide changes generating two amino acid differences. No evidence of post‐translational modifications has been found. Hypotheses are formulated in regard to relationships with technological quality. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Direct matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) analysis of a mixture of tryptic peptides was used to verify the gene-derived amino acid sequence of the high molecular weight (HMW) subunit 1Dx2 of bread wheat. Analysis of the digest was performed by recording several MALDI mass spectra of the mixture at low, medium and high mass ranges, and optimising the matrix and the acquisition parameters for each mass range. This resulted in coverage of the whole sequence except for a short fragment T3 (3 amino acids), which was not detected. It also allowed the insertion of a Pro residue in position 59 to be identified. The results obtained provide evidence for the lack of a substantial level of glycosylation or other post-translational modifications of subunit 1Dx2, and demonstrate that MALDI-MS is the most useful method presently available for the direct verification of the gene-derived sequences of HMW glutenin subunits and similar proteins.  相似文献   

16.
Glutathione peroxidase (isolated from bovine erythrocytes) and its behaviour during alkylation and enzymatic digestion were studied by various hyphenated techniques: gel electrophoresis–laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS), size-exclusion liquid chromatography–ICP MS, capillary high-performance liquid chromatography (capHPLC)–ICP MS, matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) MS, electrospray MS, and nanoHPLC–electrospray ionization (ESI) MS/MS. ESI TOF MS and MALDI TOF MS allowed the determination of the molecular mass but could not confirm the presence of selenium in the protein. The purity of the protein with respect to selenium species could be evaluated by LA ICP MS and size-exclusion chromatography (SEC)–ICP MS under denaturating and nondenaturating conditions, respectively. SEC–ICP MS and capHPLC–ICP MS turned out to be valuable techniques to study the enzymolysis efficiency, miscleavage and artefact formation during derivatization and tryptic digestion. For the first time the parallel ICP MS and ESI MS/MS data are reported for the selenocysteine-containing peptide extracted from the gel; capHPLC–ICP MS allowed the sensitive detection of the selenopeptide regardless of the matrix and nanoHPLC–electrospray made possible its identification. Figure Eye catching image Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
One of the main objectives of wheat glutenin subunit (GS) analysis is the identification of protein components linked to wheat quality. The proteomic characterization of glutenin has to consider the relatively low levels of arginine and lysine residues and the close sequence similarity among the different groups of these subunits, which hinders or even prevents the identification of the GS. In this study, a proteomic approach has been applied to resolve the heterogeneity of wheat glutenin components. Proteins extracted from Triticum durum flour were first analyzed by two‐dimensional gel electrophoresis, which greatly reduced glutenin complexity. The identity of each spot was confirmed by nano liquid chromatography tandem mass spectrometry analysis of tryptic peptides. In parallel, measurements of the high mass range by matrix‐assisted laser desorption/ionization time‐of‐flight analysis allowed detection of the large tryptic peptides. Gathering all data from search engine interrogation, very high sequence coverage was obtained for high molecular weight GS, including Bx7 and By8, in agreement with the known genetic profile of durum wheat. In addition, a truncated form of By8, never detected before, was also found. Low molecular weight GS (LMW‐GS) B‐type was identified with reasonable sequence coverage, while a clear identification of LWM‐GS C‐ and D‐type was hindered by the incompleteness of the wheat DNA databases. This study represents the first comprehensive analysis of the glutenin proteome and provides a reliable method for classifying wheat varieties according to their glutenin profile. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is challenging when it is directly applied to identify bacteria in water. This study demonstrates a rapid, sensitive, and selective technique for detection of Gram-positive bacteria in water. It involves a combination of membrane filtration (MF) and vancomycin-conjugated magnetite nanoparticles (VNPs) to selectively separate and concentrate Gram-positive bacteria in tap water and reservoir water, followed by rapid analysis of the isolates using whole-cell MALDI-MS. VNPs specifically recognize cells of Gram-positive bacteria, which serves as a basis for affinity capture of target Gram-positive bacteria. A two-step procedure of surface modification of bare magnetite nanoparticles was applied to synthesize VNPs. MF prior to VNP-based magnetic separation can effectively increase the enrichment factor and detection sensitivity and reduce time-consuming culture steps and the matrix effect for analysis of bacteria in MALDI-MS. The enrichment factor for the MF-VNP technique is about 6 × 104. A variety of bacteria, including Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, and Enterococcus faecium, were successfully analyzed from aqueous solutions and their mixtures with Gram-negative bacteria. The optimal conditions of the VNP/MALDI-MS technique, including selection of the MALDI matrix, the choice of cell-washing solution, and the VNP concentration, were also investigated. The capture efficiencies of Gram-positive bacteria with VNPs were 26.7–33.3%. The mass variations of characteristic peaks of the captured bacteria were within ±5 Da, which indicated good reproducibility of the proposed technique. The technique was applied to detect Gram-positive bacteria in tap water and reservoir water with an analysis time of around 2 h. The detection limit for Bacillus cereus, Enterococcus faecium, and Staphylococcus aureus was 5 × 102 cfu/ml for 2.0-l water samples.  相似文献   

19.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has been used successfully to detect phosphorylation sites in proteins. Applications may be limited by the low response of phosphopeptides compared to nonphosphorylated peptides in MALDI MS. The addition of ammonium salts to the matrix/analyte solution substantially enhances the signal for phosphopeptides. In examples shown for equimolar mixtures, the phosphorylated peptide peaks become the largest peaks in the spectrum upon ammonium ion addition. This can allow for the identification of phosphopeptides in an unfractionated proteolytic digestion mixture. Sufficient numbers of protonated phosphopeptides can be generated such that they can be subjected to postsource decay analysis, in order to confirm the number of phosphate groups present. The approach works well with the common MALDI matrices such as α-cyano-4-hydroxycinnamic acid and 2,5-dihydroxybenzoic acid, and with ammonium salts such as diammonium citrate and ammonium acetate.  相似文献   

20.
The use of 5-aminosalicylic acid (5-ASA) as a new matrix for in-source decay (ISD) of peptides including mono- and di-phosphorylated peptides in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is described. The use of 5-ASA in MALDI-ISD has been evaluated from several standpoints: hydrogen-donating ability, the outstanding sharpness of molecular and fragment ion peaks, and the presence of interference peaks such as metastable peaks and multiply charged ions. The hydrogen-donating ability of several matrices such as α-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (2,5-DHB), 1,5-diaminonaphthalene (1,5-DAN), sinapinic acid (SA), and 5-ASA was evaluated by using the peak abundance of a reduction product [M + 2H + H]+ to that of non-reduced protonated molecule [M + H]+ of the cyclic peptide vasopressin which contains a disulfide bond (S-S). The order of hydrogendonating ability was 1,5-DAN > 5-ASA > 2,5-DHB > SA = CHCA. The chemicals 1,5-DAN and 5-ASA in particular can be classified as reductive matrices. 5-ASA gave peaks with higher sharpness for protonated molecules and fragment ions than other matrices and did not give any interference peaks such as multiply-protonated ions and metastable ions in the ISD mass spectra of the peptides used. Particularly, 1,5-DAN and 5-ASA gave very little metastable peaks. This indicates that 1,5-DAN and 5-ASA are more “cool” than other matrices. The 1,5-DAN and 5-ASA can therefore be termed “reductive cool” matrix. Further, it was confirmed that ISD phenomena such as N-Cα bond cleavage and reduction of S-S bond is a single event in the ion source. The characteristic fragmentations, which form a− and (a + 2)-series ions, [M + H − 15]+, [M + H − 28]+, and [M + H − 44]+ ions in the MALDI-ISD are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号