首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Irradiation of daunomycin (or adriamycin) and the spin trap 5,5-dimethyl-l-pyrroline-1-oxide (DMPO) at 490 nm in the presence or in the absence of air generated the hydroxyl radical adduct (DMPO-OH). The observed DMPO-OH signal was not affected by the addition of hydroxyl radical scavengers (ethanol, formate), suggesting that direct trapping of the hydroxyl radical was not involved. The DMPO-OH signal was insensitive to superoxide dismutase and catalase, which ruled out the possibility of superoxide or H2O2 involvement. These findings demonstrate that daunomycin (or adriamycin) does not generate hydroxyl radicals or superoxide radical anions when subjected to 490-nm excitation. However, when daunomycin (or adriamycin) was irradiated at 310 nm DMPO adducts derived from two carbon-centered radicals, superoxide and the hydroxyl radical were detected. The superoxide adduct of DMPO was abolished by the addition of SOD, providing unequivocal evidence for the generation of the superoxide anion radical. The daunomycin semiquinone radical, observed upon 310-nm irradiation of daunomycin in the absence of DMPO, appears to be the precursor of the superoxide radical anion. One of the carbon-centered radicals trapped by DMPO exhibited a unique set of hyperfine parameters and was identified as an acyl radical. This suggests that the known photochemical deacylation of daunomycin occurs via a homolytic cleavage mechanism. The free radicals generated photolytically from adriamycin and daunomycin may be involved in the etiology of the skin ulceration and inflammation caused by these drugs. A knowledge of the dependence of these photogenerated radicals on the wavelength of excitation may be important in the development of adriamycin and daunomycin for photodynamic therapy.  相似文献   

2.
The photochemistry of 5,5-dimethyl-l-pyrroline N -oxide (DMPO) has been studied in benzene, cyclohexane and aqueous buffer solutions (pH 7.4) by means of electron paramagnetic resonance (EPR) and the spin trapping technique. Ultraviolet irradiation of DMPO in aqueous buffer with unfiltered UV radiation from a Xe arc lamp results in photoionization of the spin trap and the generation of the DMPO cation radical, DMPO+. The aqueous electron, eaq, was trapped by DMPO and detected as the DMPO/H adduct. The DMPO+- reacted with the water to yield the DMPO/OH adduct. Ultraviolet irradiation of DMPO in nitrogen-saturated benzene gave an unidentified carbon-centered DMPO adduct that was replaced by hydroperoxyl and alkoxyl adducts of DMPO when oxygen was present. Experiments employing 17O2 gas indicated that the oxygen in the DMPO alkoxyl adduct was derived from molecular oxygen. However, UV irradiation of DMPO in cyclohexane yielded the cyclohexyl and cyclohexyloxyl adducts of DMPO in nitrogen-saturated and air-saturated solutions, respectively. These observations suggest that in aprotic solvents UV irradiation of DMPO generates a carbon-centered radical (R), derived from the trap itself, which in benzene reacts with oxygen to yield an alkoxyl radical (RO), possibly via a peroxyl radical (ROO) intermediate. In cyclohexane R abstracts a hydrogen atom from the solvent to yield the cyclohexyl radical in the absence of oxygen and the cyclohexyloxyl radical in the presence of oxygen. These findings indicate that when DMPO is used as a spin trap in studies employing short-wavelength UV radiation (λ < 300 nm) the photochemistry of DMPO cannot be ignored.  相似文献   

3.
Abstract— The photodecomposition of sulfanilamide, 4-aminobenzoic acid and related analogs in aqueous solution has been studied with the aid of spin traps 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) and CH3NO2 as well as by direct electron spin resonance techniques. The NH2 radical was trapped by DMPO during the photolysis of aqueous solutions of sulfanilamide with a Xe arc lamp. Studies with [15N1]-sulfanilamide indicated that the NH2 radical was generated by homolytic fission of the sulfur-nitrogen bond. Under the same conditions DMPO trapped the H and SO3 radicals during photolysis of sulfanic acid. Direct photolysis of sulfanilamide, sulfanilic acid and Na2SO3 in the absence of any spin trap yielded the SO3 radical. Photolysis of 4-aminobenzoic acid at pH 7 gave the H radical which was trapped by DMPO. At low pH values OH and C6H4COOH radicals were generated during the photolysis of 4-aminobenzoic acid. No eaq were trapped by CH3NO2 when acid (pH 4) and neutral aqueous solutions of sulfanilamide or 4-aminobenzoic acid were photoirradiated. The mechanism of formation of known photoproducts from the free radicals generated by sulfanilamide and 4-aminobenzoic acid during irradiation are discussed. The free radicals generated by these agents may play an important role in their phototoxic and photoallergic effects.  相似文献   

4.
Abstract— Free radical intermediates appearing during illumination of aqueous suspensions of tungsten oxide were detected by electron spin resonance using the technique of spin trapping. Solutions irradiated contained methanol, formaldehyde, sodium formate and sodium hydrogen carbonate. Signals assigned to the spin adducts of the •H, •OH, •CO2- and •CH2OH radicals were found.  相似文献   

5.
Abstract The photoallergens bithionol (BT) and fentichlor (FT) generated free radical photoproducts upon UV photolysis which were observable by direct electron spin resonance (ESR). Both the yield and the type of free radical photoproducts were affected by pH, and to some extent, concentration of oxygen and concentrations of the photosensitizers. At pH 8.5, bithionol (0.9 mM) generated a semiquinone type free radical (BI) via a mechanism which probably involves substitution of the 4-chlorine by hydroxyl to form the corresponding hydroquinone followed by oxidation. The photolysis of 4-chlorophenol, 4-chlorocatechol and 2,2'-methylene-bis(4-chlorophenol) also generated the corresponding semiquinone radicals, suggesting that this mechanism is shared by other 4-chlorophenols. At pH 8.5, only photoproduct BI was observed during the irradiation of BT; FT related photoproducts were not observed at this pH. However, at higher pH values (pH 10.7 or pH 12), FT photoproducts were also observed in addition to BI upon prolonged irradiation. Moreover, the yield of BI increased drastically at higher pH. Oxygen did not play any role at pH 10.7, although it enhanced the yield of BI at pH 8.5. At pH 8.5, irradiated fentichlor generated, in roughly equal amounts, a semiquinone radical (Fla) and an unidentified species which contained two inequivalent protons (FII). At higher pH values (pH 10.7 and pH 12), at least four species were observed. All of the species are believed to be semiquinone radicals and two have been unambiguously identified. The yield of FI increased by a factor of 50 as the pH was increased from 8.5 to 12. Oxygen played only a minor role at pH 10.7 and above. However, at pH 8.5, it also enhanced the yield of FI.  相似文献   

6.
Radical adducts of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) with hydroxyl, methanol-derived, and ethanol-derived radicals were detected by a combination of liquid chromatography with either electron paramagnetic resonance or thermospray mass spectrometry (LC/EPR or LC/TSP-MS) in the Fenton system (with methanol or ethanol). One radical adduct was observed in the reaction of DMPO with the hydroxyl radical or the methanol-derived radical, while two adducts were detected in the reaction of DMPO with ethanol-derived radicals. The LC/TSP-MS spectra showed quasi-molecular ions [M + H]+ at m/z 146 and m/z 160 for the methanol-derived and ethanol-derived radical adducts, respectively, and an apparent molecular ion M+ at m/z 130 for the hydroxyl radical adduct. Use of methyl-D3 alcohol (CD3OH) and ethyl-D5 alcohol (CD3CD2OH) indicated that carbon-centered radicals are formed. Experiments with partially deuterated ethanol (CD3CH2OH and CH3CD2OH) indicated that the two adducts observed in the reaction of DMPO with ethanol-derived radicals correspond to the two diastereomeric adducts of DMPO with the alpha-hydroxyethyl free radical.  相似文献   

7.
Electron spin resonance, spin-trapping and fluorescence techniques demonstrate that 2-phenylbenzoxazole (P) participates in photo-induced reactions with alcohols and electron donors like the azide ion. Irradiation of Pat 300 nm in deaerated ethanol produces ethoxyl and hydroxyethyl radicals which can be detected with the spin trap, 5,5-dimethyl-l-pyrroline-l-oxide (DMPO). However, irradiation of P in the presence of N-3 leads to the appearance of the azide radical, N-3, which also reacts with DMPO. Studies with the nitroxyl radical, 2,2,6,6-tetramethylpiperidine-l-oxyl (TEMPO), suggest that electron transfer from the azide anion to an excited state of P yields the semi-reduced sensitizer, P-, which in turn reacts with TEMPO. The effect of sodium azide upon the fluorescence intensity and lifetime of P in aqueous ethanol has also been studied.  相似文献   

8.
Abstract— Photolyses at 485 or 490 nm of air saturated, H2I7O enriched, aqueous solutions of adriamycin (ADR) in the presence of 5,5-dimethyl-l-pyrroline-l-oxide (DMPO) produce a mixture of hydroxyl radical spin-adducts, i.e. DMPO-16OH- and DMPO-17OH-, as detected by electron spin resonance (ESR). DMPO-17OH- was also observed during the irradiation at these same wavelengths of aqueous solutions of ADR or daunomycin (DA) containing DMPO and 17O enriched oxygen. Therefore, the observed hydroxyl radical spin-adducts derive from both water and gaseous oxygen. It is concluded from the measured relative spin-adduct concentrations and from the enrichment fractions that most of the DMPO-OH adducts originate from water. However, if anaerobic diluted solutions of ADR (200 μ M ) or DA (600 μM) in the presence of DMPO (13 mM and 27 m M respectively) are irradiated at these same wavelengths no spin adduct is detected, indicating that oxygen is needed for the adduct formation, at these drug and spin trap concentrations. DMPO-OH- is always observed if relatively high concentrations of either the drug (1.1–2.9 mM) or the spin trap(100–150 m M ) are used in argon saturated solutions. A water photooxidation mediated mechanism is proposed in order to account for these results, analogous to previous observations in the photochemistry of other water soluble anthraquinone derivatives.  相似文献   

9.
The photolysis of amiodarone (AM) and its major metabolite mono-N-desethylamiodarone (DEA), has been studied by absorption spectroscopy, electron spin resonance spectroscopy (spin trapping) and oxygraph measurements. Changes in the absorption spectrum of both AM and DEA upon UV irradiation indicate that both drugs undergo deiodination. Spin trapping experiments with 2-methyl-2-nitrosopropane (MNP), α-phenyl-N- tert -butyl-nitrone (PBN) and 5.5-dimethyl-1-pyrroline-N-oxide (DMPO) suggest the formation of an aryl radical from AM during UV irradiation. Amiodarone also undergoes photoionization. Under aerobic conditions the photoelectron is scavenged by oxygen to give superoxide, which is trapped by DMPO. Oxygraph measurements further confirmed the consumption of oxygen and the generation of superoxide during the irradiation of aqueous solutions of AM. Deiodination, photoionization and superoxide formation were all observed at wavelengths as low as 335 nm, suggesting that some or all of these processes may be involved in AM-induced photosensitivity. The aryl radical derived from AM during UV irradiation abstracted a hydrogen atom from suitable donors (ethanol, glutathione, cysteine, linoleic acid). Reaction of the dienyl radical derived from linoleic acid would yield the corresponding peroxy radical thereby initiating lipid peroxidation. This would explain the deposition of lipofuscin, a pigment formed from the products of lipid peroxidation, in the skin of patients receiving AM.  相似文献   

10.
Abstract— The photobleaching of alloxazine in buffered aqueous solution has been studied by means of flash photolysis using conventional and laser excitation sources. Several transient species have been characterized. The alloxazine triplet state (Λmax 420 nm and 550 nm, times; = 9 μs) was identified with the aid of low-temperature comparison experiments in ethanol. Transient absorption with Λmax 440 nm, which appears after decay of the triplet state, and whose second-order decay is pH-dependent, is postulated to be due to the semiquinone radical (AH2*) and a radical derived from alloxazine by addition of water and loss of a hydrogen atom (HAOH*), which are in equilibrium with their conjugate cation radicals. The results of experiments in the presence of oxygen indicate that these species are not primarily formed from the triplet state. The enhanced second-order decay of the flavin radicals in oxygen-containing solutions is interpreted in terms of their reaction with the peroxy radicals. The proposed mechanisms account for the production of hydroxylated alloxazines.  相似文献   

11.
Abstract— A high light-tolerant mutant of Anacystis was able to tolerate about three-fold higher light energy irradiance (30 W m-2) than the wild type (10 W m-2). The loss of sulfhydryl content and rate of lipid peroxidation in the wild-type cells is lower than in the mutant cells at high light irradiance. This phenomenon in the wild type is probably due to high light-induced severe photoinhibitory conditions resulting in a decreased rate of O2 evolution. Results on the bleaching of the N, N '-dimethyl- p -nitrosoaniline at high light irradiance show a higher rate of bleaching in the wild-type than in the mutant cells. Further, results on the rate of N, N '-dimethyl- p -nitrosoani)ine bleaching in the presence of radical scavengers like sodium azide, histidine and sodium formate (10 m M , each) suggest that singlet oxygen is the predominant oxygen species produced in both the wild-type and mutant cells under high light. However, a similar quenching effect of formate in the mutant cells is indicative of increased formation of hydroxyl radicals. This observation is further corroborated by higher rate of lipid peroxidation. In addition to this, the superoxide dismutase activity is higher in the mutant (1.2 unit) than in the wild type. Taken together, these results suggest that the cells of the high light-tolerant mutant have an efficient intracellular mechanism to transform the free oxygen radicals.  相似文献   

12.
Abstract— Ethanol and ethanol-water matrices were exposed to X-rays at 77K and the photochemistry and paths of radical conversion were investigated by EPR methods. The main X-ray induced radical, CH3ĊHOH, is probably photoionized by 254 nm light. The following radicals are produced during prolonged UV-irradiation of CH3ĊHOH radicals: ĊH3, ĊHO, H and 2 types of radicals giving singlet EPR spectra. One of these radicals (d) is bleachable with 580 nm light, ĊH3 and ĊH3ĊHOH being formed during the bleaching, the other one (e) is unbleachable and the most stable radical in the matrix during annealing. The CH3 radicals decay at 77 K (τ∽ 10 min) and produce CH3-CHOH radicals and the unbleachable radical (e). Stable H-atom signals were seen in X-irradiated ethanol-water mixtures (volume ratio 2:1) at 77 K. The H-atom signals increased during photobleaching of the trapped electrons in the matrix and during UV-photolysis of CH3CHOH radicals.  相似文献   

13.
We investigated electron transfer between a tyrosyl radical and cysteine residue in two systems, oxyhemoglobin (oxyHb)/peroxynitrite/5,5-dimethyl-1-pyrroline N-oxide (DMPO) and myoglobin (Mb)/hydrogen peroxide/DMPO, using a combination of techniques including ESR, immuno-spin trapping (IST), and ESI/MS. These techniques show that the nitrone spin trap DMPO covalently binds to one or more amino acid radicals in the protein. Treating oxyHb with peroxynitrite and Mb with H2O2 in the presence of a low DMPO concentration yielded secondary Cys-DMPO radical adduct exclusively, whereas in the presence of high DMPO, more of the primary Tyr-DMPO radical adduct was detected. In both systems studied, we found that, at high DMPO concentrations, mainly tyrosyl radicals (Hb-Tyr42/Tyr24 and Mb-Tyr103) are trapped and the secondary electron-transfer reaction does not compete, whereas in the presence of low concentrations of DMPO, the secondary reaction predominates over tyrosyl trapping, and a thiyl radical is formed and then trapped (Hb-Cys93 or Mb-Cys110). With increasing concentrations of DMPO in the reaction medium, primary radicals have an increasing probability of being trapped. MS/MS was used to identify the specific Tyr and Cys residues forming radicals in the myoglobin system. All data obtained from this combination of approaches support the conclusion that the initial site of radical formation is a Tyr, which then abstracts an electron from a cysteine residue to produce a cysteinyl radical. This complex phenomenon of electron transfer from one radical to another has been investigated in proteins by IST, ESR, and MS.  相似文献   

14.
Abstract —From flash photolyses of methyl formate (HCOOCH3), d -methyl formate (DCOOCH3), methyl formate- d 3 (HCOOCD3) and fully ***deuterated methyl formate (DCOOCD3) in the vapour phase at room temperature, the relative efficiencies of the formyl and methoxyl radicals in producing formaldehyde have been determined.  相似文献   

15.
Abstract— The initial radical produced on UV irradiation of the photoallergen bis (2-hydroxy-3,5-dichlorophenyl) sulphide (bithionol) in aqueous solution (pH 8) has been characterised involving chlorine isotope interaction (35Cl 0.059, 37Cl 0.049 mT) in the interpretation of the ESR spectrum. This is the first time that this effect has been observed in solution in these systems.  相似文献   

16.
IntroductionSPin trapping technique has been widely used for the detection and identification of unstable radicals. As traps, nitrones and nitroso compounds are most widely usedll--4]. However,the identification of spin adducts by EPR spectroscopy is rather difficult because the variationof the hyperfine coupling constants(hfccs) of spin adducts caused by the structural changes oftrapped radicals is not very large. Recently, the ph osp horns- con t al m ng m t rox id e h a s att ra ctedmuch …  相似文献   

17.
Abstract— Irradiation of bleomycin with light (λ > 320 nm) leads to a decrease in absorbance at 290 nm, which is suppressed by metal ions and by oxygen. Light-induced oxygen consumption is diminished by the enzymes superoxide dismutase and catalase, implying that toxic reduced species of oxygen (O2 and H2O2) are formed during irradiation. Spin-trapping measurements with 5,5-dimethyl-1-pyrroline-1-oxide and 2-methyl-2-nitrosopropane demonstrated that hydroxyl radical and methyl radical adducts also are generated in the system. In addition, direct ESR measurements have shown that methyl radicals are produced during irradiation of bleomycin solutions at low temperatures, together with radicals probably derived from the bithiazole moiety of the bleomycin. The latter are also produced from irradiation of the model compound bithia. Radical production is diminished by complexation of bleomycin with metal ions.  相似文献   

18.
Abstract —The ultraviolet irradiation (290 nm ≤Λ≤ 390 nm) of indole, purine, indazole, acridine and quinoline in 2-methyltetrahydrofuran glass at 77 K produces trapped radicals. Two electron-paramagnetic-resonance (EPR) signals are found at 77 K during illumination, one at high magnetic field (3–25 times 10-1 T) assigned to the matrix radical and the other at low field (1.3 times 10-1 to 1–5 times 10-1 T) attributed to the lowest triplet state of the heterocyclic molecule. Quantum yields for triplet production at 77 K are 0–34 for indole, 0.51 for purine, 0.55 for indazole, 0.15 for acridine, and 0.94 for quinoline. The rate of formation of matrix radicals varies as the n Rth power of the incident light intensity, I 0nR, where 1.6 ≤ n R=≤ 2. Solvent radical yields, which depend on the light intensity, have been determined. Under the experimental conditions, no signals attributable to trapped electrons or cations have been observed. The dependence of the reciprocal value of the rise lifetime of the low field EPR signal as a function of the intensity of exposure is in accordance with a biphotonic mechanism.  相似文献   

19.
Abstract— The hemolysis of human erythrocytes by irradiation at 254 nm has been studied. Neither superoxide radicals nor singlet oxygen play a significant rôle and it is likely that the major species involved are hydroxyl radicals and, indirectly, carbonate anion or formate radicals. Similarly, when erythrocytes are treated with a system commonly used as source of superoxide radicals (photoreduction of riboflavin) it has been demonstrated that O-2 does not participate in lysis, but that singlet oxygen (possibly with hydroxyl radicals) is a major oxygen species involved in destruction of the cell membrane.  相似文献   

20.
Abstract— The yield of the primary products of the liquid water photolysis at 1236 and 1470 Å is reported. It was found that besides the dissociation of the excited water molecules into H and OH radicals probably eaq is also formed. The H and OH radicals were scavenged by means of formate, and the eaq together with a part of H2O* by adding carbon dioxide. The quantum yields determined at 1236 Å, are: Φ(H, OH) = 1.03 & 0.02, 0.06 <Φ( eaq , H2O*) < 0.12 and at 1470 Å,: Φ(H, OH)=0.72±0.02, 0.037 < Φ( eaq , H2O*) <0.075. The quantum yield of high purity water at 1849 Å in the absence of any scavengers is Φ(H, OH)=0.022. Previously published data by us for 1849 Å are also given: Φ(H, OH)=0.33 ± 0.01 and 0.02 < Φ ( eaq H2O*) < 0.04. Reaction mechanisms are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号