首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
В работе для неотрица тельных последовате льностей (...,a ?1 i ), aa 0 i ),a 1 i ), ...), удовлетв оряющих условию \(0< \mathop {\sup }\limits_k a_k^{(i)}< \infty\) (i=1,...,т), доказ а но неравенство (1) $$\begin{gathered} \mathop \sum \limits_{k = - \infty }^\infty \mathop {\sup }\limits_{k \leqq k_1 + \ldots + k_m \leqq k + l} (a_{k_1 }^{(1)} \ldots a_{k_m }^{(m)} ) \geqq \hfill \\ \geqq \mathop \prod \limits_{i = 1}^m (\mathop {\sup }\limits_{ - \infty< k< \infty } a_k^{(i)} )\left[ {\mathop \sum \limits_{i = 1}^m \frac{{\mathop \sum \limits_{k = - \infty }^\infty (a_k^{(i)} )^{p_i } }}{{(\mathop {\sup }\limits_{ - \infty< k< \infty } a_k^{(i)} )^{p_i } }} + l - m + 1} \right], \hfill \\ \end{gathered}$$ гдеl произвольное не отрицательное целое число, 1≦p 1, ...,p m ≦∞ и \(\mathop \sum \limits_{i = 1}^m p_i^{ - 1} = 1\) . Это неравенство явля ется обобщением и уто чнением неравенств А. Прекопа, Ш. Данча и Л. Лейндлера. Доказано также, что ес ли все последователь ности содержат только коне чное число ненулевых членов, то н еобходимым условием для равенства в (1) является существование такого числа α>0, чтоa k( i )=а илиa k( i )=0 для всехi=1,...,m;?∞<k<∞.  相似文献   

2.
LetQ(x) denote a quadratic form over the rational integers in four variables (x=(x1,...,x4)). ThenQ is representable as a symmetric matrix. Assume this matrix to be non-singular modp(p≠2 prime); then the “inverse” quadratic formQ ?1 modp can be defined. Letf:?4→? be defined such that the Fourier transformf exists and the sum $$\sum\limits_{x \in \mathbb{Z}^4 } {f(c x), c \in \mathbb{R}, c \ne 0} $$ is convergent. Furthermore, letm=p 1...p k be the product ofk distinct primes withm>1, 2×m; let $$\varepsilon = \prod\limits_{i = 1}^k {\left( {\frac{{\det Q}}{{p_i }}} \right)} \ne 0$$ for the Legendre symbol $$\left( {\frac{ \cdot }{p}} \right)$$ ; define $$B_i (Q,x) = \left\{ {\begin{array}{*{20}c} {1 for Q(x) \equiv 0\bmod p_i } \\ , \\ {0 for Q(x)\not \equiv 0\bmod p_i } \\ \end{array} } \right.$$ and forr∈?,r>0, $$F(Q,f,r) = \sum\limits_{x \in \mathbb{Z}^4 } {\left( {\prod\limits_{i = 1}^k {\left( {B_i (Q,x) - \frac{1}{{p_i }}} \right)} } \right)f(r^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} x)} $$ Then we have $$F(Q,f,m) = \varepsilon F(Q^{ - 1} ,\hat f,m)$$   相似文献   

3.
ДОкАжАНО, ЧтО Дль тОгО, ЧтОБы Дльr РАж ДИФФЕРЕНцИРУЕМОИ НА пРОМЕжУткЕ [А, + ∞) ФУНкцИИf сУЩЕстВОВА л тАкОИ МНОгОЧлЕН (1) $$P(x) = \mathop \Sigma \limits_{\kappa = 0}^{r - 1} a_k x^k ,$$ , ЧтО (2) $$\mathop {\lim }\limits_{x \to + \infty } (f(x) - P(x))^{(k)} = 0,k = 0,1,...,r - 1,$$ , НЕОБхОДИМО И ДОстАтО ЧНО, ЧтОБы схОДИлсь ИН тЕгРАл (3) $$\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{r - 1} }^{ + \infty } {f^{(r)} (t)dt.}$$ ЕслИ ЁтОт ИНтЕгРАл сх ОДИтсь, тО Дль кОЁФФИц ИЕНтОВ МНОгОЧлЕНА (1) ИМЕУт МЕс тО ФОРМУлы $$\begin{gathered} a_{r - m} = \frac{1}{{(r - m)!}}\left( {\mathop \Sigma \limits_{j = 1}^m \frac{{( - 1)^{m - j} f^{(r - j)} (x_0 )}}{{(m - j)!}}} \right.x_0^{m - j} + \hfill \\ + ( - 1)^{m - 1} \left. {\mathop \Sigma \limits_{l = 0}^{m - 1} \frac{{x_0^l }}{{l!}}\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{m - l - 1} }^{ + \infty } {f^{(r)} (t_{m - 1} )dt_{m - 1} } } \right),m = 1,2,...,r. \hfill \\ \end{gathered}$$ ДОстАтОЧНыМ, НО НЕ НЕОБхОДИМыМ Усл ОВИЕМ схОДИМОстИ кРА тНОгО ИНтЕгРАлА (3) ьВльЕтсь схОДИМОсть ИНтЕгРАл А \(\int\limits_a^{ + \infty } {x^{r - 1} f^{(r)} (x)dx}\)   相似文献   

4.
ПустьM m - множество 2π-п ериодических функци йf с конечной нормой $$||f||_{p,m,\alpha } = \sum\limits_{k = 1}^m {||f^{(k)} ||_{_p } + \mathop {\sup }\limits_{h \ne 0} |h|^{ - \alpha } ||} f^{(m)} (o + h) - f^{(m)} (o)||_{p,} $$ где1 ≦ p ≦ ∞, 0≦α≦1. Рассмотр им средние Bалле Пуссе на $$(\sigma _{n,1} f)(x) = \frac{1}{\pi }\int\limits_0^{2x} {f(u)K_{n,1} (x - u)du} $$ и $$(L_{n,1} f)(x) = \frac{2}{{2n + 1}}\sum\limits_{k = 1}^{2n} {f(x_k )K_{n,1} } (x - x_k ),$$ де0≦l≦n и x k=2kπ/(2n+1). В работе по лучены оценки для вел ичин \(||f - \sigma _{n,1} f||_{p,r,\beta } \) и $$||f - L_{n,1} f||_{p,r,\beta } (r + \beta \leqq m + \alpha ).$$   相似文献   

5.
пУстьλ={λ i} i=1 —пОслЕ ДОВАтЕльНОсть ВЕЩЕс тВЕННых ЧИсЕл сλ i↑∞ Иλ m={λт+ i} i=0 . РАссМАтРМВАУтсь 2π-пЕ РИОДИЧЕскИЕ ФУНкцИИ, Дль кОтОРых $$V_\Lambda (f) = \mathop {\sup }\limits_x \mathop {\mathop {\sup }\limits_{(a_i ,b_i ) \cap (a_j ,b_j ) = \emptyset } }\limits_{(a_i ,b_i ) \subset (x,x + 2\pi ]} \mathop \sum \limits_{\iota = 1}^\infty \frac{{\left| {f(b_i ) - f(a_i )} \right|}}{{\lambda _i }}< \infty ,$$ И Дль кОтОРых $$\mathop {\lim }\limits_{m \to \infty } V_{\Lambda ^m } (f) = 0.$$ ДОкАжАНО, ЧтО УжЕ ВО Вт ОРОМ клАссЕ Есть ВЕжД Е АппРОксИМАтИВНО НЕД ИФФЕРЕНцИРУЕМыЕ ФУН к-цИИ. пОлУЧЕНы ОцЕНкИ кОЁФФИцИЕНтО В ФУРьЕ ЁтИх клАссОВ И НЕкОтОРыЕ РЕжУльтАты ОБ Их ОкОНЧАтЕльНОстИ. кАк слЕДстВИЕ ДАНО ДОстА тОЧНОЕ УслОВИЕ Дль Их НЕсОВп АДЕНИь.  相似文献   

6.
LetR be the reals ≥ 0. LetF be the set of mapsf: {1, 2, ?,n} →R. Choosew ∈ F withw i = w(i) > 0. PutW i = w1 + ? + wi. Givenf ∈ F, define \(\bar f\) F by $$\bar f\left( i \right) = \frac{{\left\{ {w_i f\left( 1 \right) + \ldots + w_i f\left( i \right)} \right\}}}{{W_i }}.$$ Callf mean increasing if \(\bar f\) is increasing. Letf 1, ?, ft be mean decreasing andf t+1,?: ft+u be mean increasing. Put $$k = W_n^u \min \left\{ {w_i^{u - 1} W_i^{t - u} } \right\}.$$ Then $$k\mathop \sum \limits_{i = 1}^n w_i f_1 \left( i \right) \ldots f_{t + u} \left( i \right) \leqslant \mathop \prod \limits_{j = 1}^{t + u} (\mathop \sum \limits_{i = 1}^n w_i f_1 (i)).$$   相似文献   

7.
Пусть {? ik(x):i, k=1, 2,...} — орто нормированная систе ма в пространстве с полож ительной мерой и {a ik} — последов ательность действит ельных чисел, для которой $$\mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik}^2 \kappa ^2 (i,k)< \infty ,$$ где {x(i, K)} — определенна я неубывающая последовательность положительных чисел. Тогда суммаf(x) двойног о ортогонального ряд а \(\mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik} \varphi _{ik} (x)\) существует в смысле с ходимости в метрикеL 2 и сходимос ти почти всюду. Изучае тся порядок так называем ой сильной аппроксимац ииf(x) (при коэффициентн ых условиях) прямоуголь ными частными суммами \(s_{mn} (x) = \mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik} \varphi _{ik} (x)\) . Основной ре зультат состоит в сле дующем. Если {λj(m):m=1, 2,...} — неубывающи е последовательност и положительньк чисел, стремящиеся к ∞ и такие, что \(\mathop {\lim \sup }\limits_{m \to \infty } \lambda _j (2m)/\lambda _j (m)< \sqrt 2 \) дляj=1,2, и если $$\mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik}^2 \left[ {\log log (i + 3)} \right]^2 \left[ {\log log (k + 3)} \right]^2 (\lambda _1^2 (i) + \lambda _2^2 (k))< \infty ,$$ TO ПОЧТИ ВСЮДУ $$\left\{ {\frac{1}{{mn}}\mathop \sum \limits_{i = 1}^m \mathop \sum \limits_{\kappa = 1}^m \left[ {s_{ik} (x) - f(x)} \right]^2 } \right\}^{1/2} = o_x (\lambda _1^{ - 1} (m) + \lambda _2^{ - 1} (n))$$ при min (m, n) → ∞.  相似文献   

8.
В статье доказываетс я Теорема.Какова бы ни была возрастающая последовательность натуральных чисел {H k } k = 1 c $$\mathop {\lim }\limits_{k \to \infty } \frac{{H_k }}{k} = + \infty$$ , существует функцияf∈L(0, 2π) такая, что для почт и всех x∈(0, 2π) можно найти возраст ающую последовательность номеров {nk(x)} k=1 ,удовлетворяющую усл овиям 1) $$n_k (x) \leqq H_k , k = 1,2, ...,$$ 2) $$\mathop {\lim }\limits_{t \to \infty } S_{n_{2t} (x)} (x,f) = + \infty ,$$ 3) $$\mathop {\lim }\limits_{t \to \infty } S_{n_{2t - 1} (x)} (x,f) = - \infty$$ .  相似文献   

9.
In this paper, we consider the asymptotic behavior of solutions of the forced nonlinear neutral difference equation $$\Delta \left[ {x(n) - \sum\limits_{i - 1}^m {p_i (n)x(n - k_i )} } \right] + \sum\limits_{j = 1}^s {q_j (n)f(x(n - l_j )) = r(n)} $$ with sign changing coefficients. Some sufficient conditions for every solution of (*) to tend to zero are established. The results extend and improve some known theorems in literature.  相似文献   

10.
Assume that the coefficients of the series $$\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i = 1}^m \sin k_i x_i $$ satisfy the following conditions: a) ak → 0 for k1 + k2 + ...+km →∞, b) \(\delta _{B,G}^M (a) = \mathop {\mathop \sum \limits_{k_i = 1}^\infty }\limits_{i \in B} \mathop {\mathop \sum \limits_{k_j = 2}^\infty }\limits_{j \in G} \mathop {\mathop \sum \limits_{k_v = 0}^\infty }\limits_{v \in M\backslash (B \cup G)} \mathop \Pi \limits_{i \in B} \frac{1}{{k_i }}|\mathop \sum \limits_{I_j = 1}^{[k_j /2]} (\nabla _{l_G }^G (\Delta _1^{M\backslash B} a_k ))\mathop \Pi \limits_{j \in G} l_j^{ - 1} |< \infty ,\) for ∨B?M, ∨G?M,BG, where M={1,2, ...,m}, $$\begin{gathered} \,\,\,\,\,\,\,\,\,\,\,\,\Delta _1^j a_k = a_k - a_{k_{M\backslash \{ j\} } ,k_{j + 1} } ,\Delta _1^B a_k = \Delta _1^{B\backslash \{ j\} } (\Delta _1^j a_k ), \hfill \\ \Delta _{l_j }^j a_k = a_{k_{M\backslash \{ j\} } ,k_j - l_j } - a_{k_{M\backslash \{ j\} } ,k_j + l_j } ,\nabla _{l_G }^G a_k = \nabla _{l_{G\backslash \{ j\} } }^{G\backslash \{ j\} } (\nabla _{l_j }^j a_k ). \hfill \\ \end{gathered} $$ Then for all n∈Nm the following asymptotic equation is valid: $$\mathop \smallint \limits_{{\rm T}_{\pi /(2n + 1)}^m } |\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i \in M} \sin k_i x_i |dx = \mathop \sum \limits_{k = 1}^n \left| {a_k } \right|\mathop \Pi \limits_{i \in M} k^{ - 1} + O(\mathop {\mathop \sum \limits_{B,{\mathbf{ }}G \subset M} }\limits_{B \ne M} \delta _{B,G}^M (a)).$$ Here \(T_{\pi /(2n + 1)}^m = \left\{ {x = (x1,x2,...,xm):\pi /(2n + 1) \leqq xi \leqq \pi ;i = \overline {1,m} } \right\}\) . In the one-dimensional case such an equation was proved by S. A. Teljakovskii.  相似文献   

11.
Получены новые оценк иL-нормы тригонометр ических полиномов $$T_n (t) = \frac{{\lambda _0 }}{2} + \mathop \sum \limits_{k = 1}^n \lambda _k \cos kt$$ в терминах коэффицие нтовλ k и их разностейΔλ k=λ k?λ k?1: (1) $$\mathop \smallint \limits_{ - \pi }^\pi |T_n (t)|dt \leqq \frac{c}{n}\mathop \sum \limits_{k = 0}^n |\lambda _\kappa | + c\left\{ {x(n,\varphi )\mathop \sum \limits_{k = 0}^n \Delta \lambda _\kappa \mathop \sum \limits_{l = 0}^n \Delta \lambda _l \delta _{\kappa ,l} (\varphi )} \right\}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ,$$ где $$\kappa (n,\varphi ) = \mathop \smallint \limits_{1/n}^\pi [t^2 \varphi (t)]^{ - 1} dt, \delta _{k,1} (\varphi ) = \mathop \smallint \limits_0^\infty \varphi (t)\sin \left( {k + \frac{1}{2}} \right)t \sin \left( {l + \frac{1}{2}} \right)t dt,$$ a ?(t) — произвольная фун кция ≧0, для которой опр еделены соответствующие инт егралы. Из (1) следует, что методы $$\tau _n (f;t) = (N + 1)^{ - 1} \mathop \sum \limits_{k = 0}^{\rm N} S_{[2^{k^\varepsilon } ]} (f;t), n = [2^{N\varepsilon } ],$$ являются регулярным и для всех 0<ε≦1/2. ЗдесьS m (f, x) частные суммы ряда Фу рье функцииf(x). В статье исследуется многомерный случай. П оказано, что метод суммирования (о бобщенный метод Рисса) с коэффиц иентами $$\lambda _{\kappa ,l} = (R^v - k^\alpha - l^\beta )^\delta R^{ - v\delta } (0 \leqq k^\alpha + l^\beta \leqq R^v ;\alpha \geqq 1,\beta \geqq 1,v< 0)$$ является регулярным, когда δ > 1.  相似文献   

12.
In a bounded domain of the n -dimensional (n?2) space one considers a class of degenerate quasilinear elliptic equations, whose model is the equation $$\sum\limits_{i = 1}^n {\frac{{\partial F}}{{\partial x_i }}} (a^{\ell _i } (u)\left| {u_{x_i } } \right|^{m_i - 2} u_{x_i } ) = f(x),$$ where x =(x1,..., xr), li?0, mi>1, the function f is summable with some power, the nonnegative continuous function a(u) vanishes at a finite number of points and satisfies \(\frac{{lim}}{{\left| u \right| \to \infty }}a(u) > 0\) . One proves the existence of bounded generalized solutions with a finite integral $$\int\limits_\Omega {\sum\limits_{i = 1}^n {a^{\ell _i } (u)\left| {u_{x_i } } \right|^{m_i } dx} }$$ of the Dirichlet problem with zero boundary conditions.  相似文献   

13.
Доказывается следую щая теорема Пусть φ(t) — неубывающая па [0,+∞] непрерывная сле ва функция, φ(0)=0.Пусть дале е \(\Phi (t) = \mathop \smallint \limits_0^t \varphi (s) ds u \mathop {sup}\limits_{t > 0} \frac{{t\varphi (t)}}{{\Phi (t)}}< \infty \) .Если X 1 Х 2, ... —такая последовательность случайных величин, что $$E\left( {\Phi \left( {\left| {\mathop \sum \limits_{i = m + 1}^{m + n} X_i } \right|} \right)} \right) \leqq g^\alpha (F_{m, n} ) (m \geqq 0, n \geqq 1)$$ , где α>1, а g(Fm,n) — некоторый функционал, зависящи й от совместного распред еления Xi и удовлетворяющий ус ловиям $$g(F_{m, n} ) + g(F_{m + k, n} ) \leqq g(F_{m, n + k} ) (m \geqq 0, n \geqq 1, k \geqq 1)$$ ,k ≧1), moсправедливы оценки $$E\left( {\Phi \left( {\mathop {\max }\limits_{1 \leqq k \leqq n} \left| {\mathop \sum \limits_{i = m + 1}^{m + n} X_i } \right|} \right)} \right) = Kg^\alpha (F_{m, n} ) (m \geqq 0, n \geqq 1)$$ ,где множитель К конеч ен и не зависит от т. п.  相似文献   

14.
The impulsive differential equation $\begin{gathered} x\prime (t) + \sum\limits_{i = 1}^m {p_i (t)x(t - \tau _i ) = 0,} {\text{ }}t \ne \xi _k , \\ \Delta x(\xi _k ) = b_k x(\xi _k ) \\ \end{gathered} $ with several retarded arguments is considered, where p i(t) ≥ 0, 1 + b k > 0 for i = 1, ..., m, t ≥ 0, $k \in \mathbb{N}$ . Sufficient conditions for the oscillation of all solutions of this equation are found.  相似文献   

15.
По определению после довательность {μ n пр инадлежит классуG s , если звезда М иттагЛеффлера произвольного степе нного ряда (1) $$\mathop \sum \limits_0^\infty a_n z^n , \mathop {lim sup}\limits_{n \to \infty } \left| {a_n } \right|^{1/n}< \infty $$ , совпадает со звёздам и Миттаг-Леффлера сте пенных рядов $$\mathop \sum \limits_0^\infty \mu _n a_n z^n ,\mathop \sum \limits_0^\infty \mu _n^{ - 1} a_n z^n $$ . В работе установлены следующие утвержден ия Теорема 1.Для произво льной последователь ности ? n с условиями $$0< \varphi _n< 1,\mathop {lim}\limits_{n \to \infty } \varphi _n = 0,\mathop {lim}\limits_{n \to \infty } \varphi _n^{1/n} = 1$$ существует неубываю щая функция χ(t) такая, ч то моменты \(\mu _n = \int\limits_0^1 {t^n d\chi (t)} \) удовлетворяют условию 0<μnn звезда М иттаг-Леффлера любог о ряда (1) совпадает со звездой МиттагЛеффлера степенных рядов . Теорема 2. Для произвол ьной неотрицательно й последовательности {аn} с условием {a n } и для любой последов ательности {?n} для к оторой 0n<1, \(\mathop {\lim }\limits_{n \to \infty } \varepsilon _n = 0\) сущест вуютπ={π n }∈G s и последовательнос ть {пi} такие, что anμn≦1 (n≧n0), \(a_{n_i } \mu _{\mu _i } \geqq exp( - \varepsilon _{n_i } )\) (i=1, 2, ...) и при эmom звезда Миттаг-Леффлера ряда (1) совпа дает со звездой Миттаг- Леффлера степенных р ядов .  相似文献   

16.
In this paper we consider the behaviour of partial sums of Fourier—Walsh—Paley series on the group62-01. We prove the following theorems: Theorem 1. Let {n k } k =1/∞ be some increasing convex sequence of natural numbers such that $$\mathop {\lim sup}\limits_m m^{ - 1/2} \log n_m< \infty $$ . Then for anyfL (G) $$\left( {\frac{1}{m}\sum\limits_{j = 1}^m {|Sn_j (f;0)|^2 } } \right)^{1/2} \leqq C \cdot \left\| f \right\|_\infty $$ . Theorem 2. Let {n k } k =1/∞ be a lacunary sequence of natural numbers,n k+1/n kq>1. Then for anyfεL (G) $$\sum\limits_{j = 1}^m {|Sn_j (f;0)| \leqq C_q \cdot m^{1/2} \cdot \log n_m \cdot \left\| f \right\|_\infty } $$ . Theorems. Let µ k =2 k +2 k-2+2 k-4+...+2α 0,α 0=0,1. Then $$\begin{gathered} \{ \{ S_{\mu _k } (f:0\} _{k = 1}^\infty ;f \in L^\infty (G)\} = \{ \{ a_k \} _{k = 1}^\infty ;\sum\limits_{k = 1}^m {a_k^2 = 0(m)^2 \} .} \hfill \\ \{ \{ S_{\mu _k } (f:0\} _{k = 1}^\infty ;f \in C(G)\} = \{ \{ a_k \} _{k = 1}^\infty ;\sum\limits_{k = 1}^m {a_k^2 = o(m)^2 \} = } \hfill \\ = \{ \{ S_{\mu _k } (f:0\} _{k = 1}^\infty ;f \in C(G),f(0) = 0\} \hfill \\ \end{gathered} $$ . Theorem 4. {{S 2 k(f: 0)} k =1/∞ ,fL (G)}=m. $$\{ \{ S_{2_k } (f:0\} _{k = 1}^\infty ;f \in C(G)\} = c. \{ \{ S_{2_k } (f:0\} _{k = 1}^\infty ;f \in C(G),f(0) = 0\} = c_0 $$ .  相似文献   

17.
The Calderon type operator $$Sx(t) = \int\limits_0^\infty {x(s)d\mathop {\min }\limits_{i = 0,1} \{ \varphi _i (s)/\Psi _\iota (t)\} } $$ is investigated from the point of view of its bounded action in symmetric spaces of measurable functions on [0, ∞), whereφ i(t) andΨ i(t) are concave positive functions on [0, ∞). The following assertions are proved. Theorem 1. Let 1) \(\alpha _{\varphi _1 } > \beta (E) \geqq \alpha (E) > \beta _{\varphi _0 } ,\) , 2)either \(\beta _{\psi _0 }< 1\) or \(\beta _{\psi 1}< 1\) ,where \(\alpha _{\varphi _1 } \) and \(\beta _{\psi _1 } \) denote exponents of the functions φ i and Ψi, i=0, 1,and α(E),β(E) are indices of the space E. Then the Calderon operator acts boundedly from E into E δ,where δ(t) and χ(t) stand for measurable solutions of the equations $$\psi _i (\delta (t)) = \chi (t)\varphi _i (t),i = 0,1,$$ and $$||x||_{E_{\delta ,\chi } } = ||x^{**} (\delta (t))\chi (t)||_E .$$ Theorem 2.If the ratio φ 0/φ(t)/φ1(t) is non-increasing, Ψi(t) are semimultiplicative and \(\alpha _{\psi _i } \) (i=0, 1),then a necessary condition for the Calderon operator to act boundedly from E into E δ, χ $$\beta _{\varphi _1 } \geqq \beta (E) \geqq \alpha (E) \geqq \alpha _{\varphi _0 } .$$   相似文献   

18.
Пустьf 2π-периодическ ая суммируемая функц ия, as k (x) еë сумма Фурье порядк аk. В связи с известным ре зультатом Зигмунда о сильной суммируемости мы уст анавливаем, что если λn→∞, то сущес твует такая функцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _{2n} } } \right\}^{1/\lambda _{2n} } = \infty .$$ Отсюда, в частности, вы текает, что если λn?∞, т о существует такая фун кцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } } \right\}^{1/\lambda _n } = \infty .$$ Пусть, далее, ω-модуль н епрерывности и $$H^\omega = \{ f:\parallel f(x + h) - f(x)\parallel _c \leqq K_f \omega (h)\} .$$ . Мы доказываем, что есл и λ n ?∞, то необходимым и достаточным условие м для того, чтобы для всехfH ω выполнялос ь соотношение $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _n } } \right\}^{1/\lambda _n } = 0(x \in [0;2\pi ])$$ является условие $$\omega \left( {\frac{1}{n}} \right) = o\left( {\frac{1}{{\log n}} + \frac{1}{{\lambda _n }}} \right).$$ Это же условие необхо димо и достаточно для того, чтобы выполнялось соотнош ение $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } = 0(f \in H^\omega ,x \in [0;2\pi ]).$$   相似文献   

19.
LetX 1,X 2,... be independent random variables, all with the same distribution symmetric about 0; $$S_n = \sum\limits_{i = 1}^n {X_i } $$ It is shown that if for some fixed intervalI, constant 1<a≦2 and slowly varying functionM one has $$\sum\limits_{k = 1}^n {P\{ S_k \in I\} \sim \frac{{n^{1 - 1/\alpha } }}{{M(n)}}} (n \to \infty )$$ then theX i belong to the domain of attraction of a symmetric stable law.  相似文献   

20.
It is proved that the limit $$\mathop {\lim }\limits_{\Delta \to \infty } \mathop {\sup }\limits_\gamma \tfrac{1}{\Delta }\int_0^\Delta {f(\gamma (t))dt} $$ , wheref: ? → ? is a locally integrable (in the sense of Lebesgue) function with zero mean and the supremum is taken over all solutions of the generalized differential equation γ ∈ [ω1, ω2], coincides with the limit $$\mathop {\lim }\limits_{T \to \infty } \mathop {\sup }\limits_{c \geqslant 0} \varphi _f (k,{\mathbf{ }}T,{\mathbf{ }}c)$$ , where $$\varphi _f = \frac{{(k - 1)\bar I_f (T,c)}}{{1 + (k - 1)\bar \lambda _f (T,c)}},k = \frac{{\omega _2 }}{{\omega _1 }}$$ . Here ¯λf = λf /T, ¯ If =If/T, and λf is the Lebesgue measure of the set $$\{ \gamma \in [\gamma _0 ,\gamma _0 + T]:f(\gamma ) \geqslant c\} = A_f ,I_f = \int_{A_f } {f(\gamma )d\gamma } $$ . It is established that this limit always exists for almost-periodic functionsf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号