首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liquid-liquid and liquid-vapor coexistence regions of various water models were determined by Monte Carlo (MC) simulations of isotherms of density fluctuation-restricted systems and by Gibbs ensemble MC simulations. All studied water models show multiple liquid-liquid phase transitions in the supercooled region: we observe two transitions of the TIP4P, TIP5P, and SPCE models and three transitions of the ST2 model. The location of these phase transitions with respect to the liquid-vapor coexistence curve and the glass temperature is highly sensitive to the water model and its implementation. We suggest that the apparent thermodynamic singularity of real liquid water in the supercooled region at about 228 K is caused by an approach to the spinodal of the first (lowest density) liquid-liquid phase transition. The well-known density maximum of liquid water at 277 K is related to the second liquid-liquid phase transition, which is located at positive pressures with a critical point close to the maximum. A possible order parameter and the universality class of liquid-liquid phase transitions in one-component fluids are discussed.  相似文献   

2.
We have used a combination of neutron scattering experiments and Monte Carlo simulations to study the initial stages of first-order phase transitions. We focus on quenches wherein the nascent phase is formed by homogeneous nucleation, and we approach the spinodal, i.e., the quench depth at which the original phase becomes unstable. In this regime, we show how critical nuclei sizes are determined from neutron scattering structure factors. Prevailing thought is that the size of the critical nucleus should increase with increasing quench depth and diverge at the spinodal. To the contrary, our experiments and simulations indicate that the critical nucleus size decreases monotonically as quench depth is increased and is finite at the spinodal.  相似文献   

3.
It is shown by Monte Carlo simulation that electrochemical thermodynamics of electrolytes in a porous electrode is qualitatively different from that in the bulk with a planar electrode. In particular, first order phase transitions occur in porous electrodes when the pore size is comparable to the ion size of the electrolytes: as the voltage is increased from zero, the surface charge density and the ion density in the porous electrodes discontinuously change at a specific voltage. The critical points for those phase transitions are identified.  相似文献   

4.
We study the phase behavior and the interfacial tension of the screened Coulomb (Yukawa) restricted primitive model (YRPM) of oppositely charged hard spheres with diameter sigma using Monte Carlo simulations. We determine the gas-liquid and gas-solid phase transitions using free energy calculations and grand-canonical Monte Carlo simulations for varying inverse Debye screening length kappa. We find that the gas-liquid phase separation is stable for kappasigma相似文献   

5.
Capillary phase transitions of linear (from C(1) to C(12)) and branched (C(5) isomers) alkanes in single-walled carbon nanotubes have been investigated using the gauge-cell Monte Carlo simulation. The isotherm at a supercritical temperature increases monotonically with chemical potential and coincides with that from the traditional grand canonical Monte Carlo simulation, whereas the isotherm at a subcritical temperature exhibits a sigmoid van der Waals loop including stable, metastable, and unstable regions. Along this loop, the coexisting phases are determined using an Maxwell equal-area construction. A generic confinement effect is found that reduces the saturation chemical potential, lowers the critical temperature, increases the critical density, and shrinks the phase envelope. The effect is greater in a smaller diameter nanotube and is greater in a nanotube than in a nanoslit.  相似文献   

6.
The multicanonical Monte Carlo method is applied to a bulk Lennard-Jones fluid system to investigate the liquid-solid phase transition. We take the example of a system of 108 argon particles. The multicanonical weight factor we determined turned out to be reliable for the energy range between -7.0 and -4.0 kJ/mol, which corresponds to the temperature range between 60 and 250 K. The expectation values of the thermodynamic quantities obtained from the multicanonical production run by the reweighting techniques exhibit the characteristics of first-order phase transitions between liquid and solid states around 150 K. The present study reveals that the multicanonical algorithm is particularly suitable for analyzing the transition state of the first-order phase transition in detail.  相似文献   

7.
We investigate the effect of three-body correlations on the phase behavior of hard rectangle two-dimensional fluids. The third virial coefficient B3 is incorporated via an equation of state that recovers scaled particle theory for parallel hard rectangles. This coefficient, a functional of the orientational distribution function, is calculated by Monte Carlo integration, using an accurate parametrized distribution function, for various particle aspect ratios in the range of 1-25. A bifurcation analysis of the free energy calculated from the obtained equation of state is applied to find the isotropic (I)-uniaxial nematic (N(u)) and isotropic-tetratic nematic (N(t)) spinodals and to study the order of these phase transitions. We find that the relative stability of the N(t) phase with respect to the isotropic phase is enhanced by the introduction of B3. Finally, we have calculated the complete phase diagram using a variational procedure and compared the results with those obtained from scaled particle theory and with Monte Carlo simulations carried out for hard rectangles with various aspect ratios. The predictions of our proposed equation of state as regards the transition densities between the isotropic and orientationally ordered phases for small aspect ratios are in fair agreement with simulations. Also, the critical aspect ratio below which the N(t) phase becomes stable is predicted to increase due to three-body correlations, although the corresponding value is underestimated with respect to simulation.  相似文献   

8.
We study polymer-polymer phase separation in a common good solvent by means of Monte Carlo simulations of the bond-fluctuation model. Below a critical, chain-length-dependent concentration, no phase separation occurs. For higher concentrations, the critical demixing temperature scales nonlinearly with the total monomer concentration, with a power law relatively close to a renormalization-group prediction based on "blob" scaling arguments. We point out that earlier simulations and experiments have tested this power-law dependence at concentrations outside the validity regime of the scaling arguments. The critical amplitudes of the order parameter and the zero-angle scattering intensity also exhibit chain-length dependences that differ from the conventional predictions but are in excellent agreement with the renormalization-group results. In addition, we characterize the variation of the average coil shape upon phase separation.  相似文献   

9.
We perform Gibbs ensemble Monte Carlo (GEMC) simulations of a one-component system of hard spheres with a repulsive shoulder and an attractive well. We show the existence of two distinct liquid-gas and liquid-liquid phase equilibria. The GEMC estimate of the critical parameters, as following from an interpolation of the binodal points, is only slightly influenced by finite size effects. The liquid-gas critical temperature and pressure are lower than those of the liquid-liquid phase separation. A discussion of our findings in comparison with those of previous numerical studies is also presented.  相似文献   

10.
1956年Flory基于Onsager的思想提出了高分子有序化的"堆积原理",即由于链的非柔顺性导致链构象的空间各向异性,只有有序化排列才能在有限的空间中放入大量的各向异性分子而不必改变其构象,由此发展的平均场格子理论被向列型有序的MonteCarlo模拟所证明。  相似文献   

11.
Applying the histogram Monte Carlo simulation method and the bond‐fluctuation model, various phase transitions in single‐polymer systems were investigated. The critical transition temperature (Θ point) in the coil‐globule collapse transition of a macromolecular chain is accurately determined. Finite‐size scaling results near the transition point are verified. The first‐order transition associated with the freezing/crystallization of a polymer at a temperature below the Θ point is also observed. The free energy profiles associated with these two transitions are explicitly computed. Furthermore, the unfolding phase transition associated with stretching a collapsed polymer chain is investigated. The free energy profile associated with the transition is explicitly computed. Results on the energy cumulants and free energy profiles provide direct evidences for the first‐order nature of the unfolding phase transition.  相似文献   

12.
Liquid-vapor and liquid-liquid phase equilibria of the polarizable Brodholt-Sampoli-Vallauri water model have been investigated by Gibbs ensemble Monte Carlo computer simulations. The coexisting liquid and vapor densities and energy of vaporization of the model is found to be in a reasonable agreement with experimental data in the entire temperature range of liquid-vapor coexistence. The critical temperature and density of the model are found to be 615 K and 0.278 gcm(3), respectively, close to the experimental values of 647.1 K and 0.322 gcm(3). In the supercooled state two distinct liquid-liquid coexistence regions are observed. The existence of liquid-liquid phase separation of a polarizable water model is demonstrated for the first time.  相似文献   

13.
We simulate the homogeneous nucleation of ice from supercooled liquid water at 220 K in the isobaric-isothermal ensemble using the MW monatomic water potential. Monte Carlo simulations using umbrella sampling are performed in order to determine the nucleation free energy barrier. We find the Gibbs energy profile to be relatively consistent with that predicted by classical nucleation theory; the free energy barrier to nucleation was determined to be ~18 k(B)T and the critical nucleus comprised ~85 ice particles. Growth from the supercooled liquid gives clusters that are predominantly cubic, whilst starting with a pre-formed subcritical nucleus of cubic or hexagonal ice results in the growth of predominantly that phase of ice only.  相似文献   

14.
We report the experimental and simulation studies for the system of nitrobenzene-cyclododecane, showing an apparent critical point, which lies in their metastable, experimentally inaccessible state, below their melting point, affecting physical and chemical properties of this system in the stable liquid phase. The nonlinear dielectric effect (NDE) was measured in the mixture of nitrobenzene with cyclododecane. The mixture has been found to show an apparent critical point which lies below the melting point, manifested as anomalous NDE behavior in the vicinity of the critical concentrations in the stable liquid phase. The melting temperature of this system was estimated using the differential scanning calorimetry method. For such a system, we also performed Monte Carlo (MC) simulations that aimed to analyze the kinds of phase transitions observed and the conditions of their occurrence in Lennard-Jones mixture. The enthalpy, configurational energy, and radial distribution function have been estimated by the MC simulation method in the N-P-T system. Immiscibility conditions according to the approach by Schoen and Hoheisel [Mol. Phys. 57, 65 (1986)] are also discussed.  相似文献   

15.
In aqueous surfactant and lipid systems, different liquid crystalline phases are formed at different temperatures and water contents. The "natural" phase sequence implies that phases with higher curvature are formed at higher water contents. On the other hand, there are exceptions to this rule, such as the monoolein/water system. In this system an anomalous transition from lamellar to reverse cubic phase upon addition of water is observed. The calorimetric data presented here show that the hydration-induced transitions to phases with higher curvature are driven by enthalpy, while the transitions to phases with lower curvature are driven by entropy. It is shown that the driving forces of phase transitions can be determined from the appearance of the phase diagram using the approach based on van der Waals differential equation. From this approach it follows that the slope of the phase boundary should be positive with respect to water content if the phase diagram obeys the "natural" phase sequence. The increase of entropy, which drives the anomalous phase transitions, arises from the increase of disorder of the hydrocarbon chains.  相似文献   

16.
Metropolis Monte Carlo simulations of hydrogen-bonded liquids (water and methanol) were performed with the well tested effective pair potentials TIP5P and OPLS. The Coulomb contribution for the interaction potential was damped by a factor η varied from 1 to 0.49 for water and 1 to 0.15 for methanol. As a result, the networks formed by the hydrogen-bonded molecules presented interesting properties as a function of η, including small-world patterns and percolation transitions. These complex networks were analyzed by local (clustering coefficients, average degrees), semi-global (path lengths) and global (spectral densities) properties, and islands statistics. From these properties, small-world behavior was found for η in the range 0.60-0.75 for both liquids, interestingly independent of the molecular structure of the liquid. Phase transition behavior was observed for the average degrees and the clustering coefficient curves with critical values at 0.55 for water and 0.34 for methanol. Macroscopic properties such as mass density and vaporization enthalpy were also parametrically dependent on η and they presented phase transition behavior that coincides with the critical values obtained from the topological analysis. This is probably the first time that such phase transitions are observed for these quantities and shows a direct relation between macroscopic properties and topological features of hydrogen bond networks.  相似文献   

17.
Monte Carlo simulations in the grand canonical ensemble, the multiple-histogram analysis and finite-size scaling techniques have been used to study a phase behavior of trimer BAB on a square lattice. The systems with the same energies u(AA) = u(BB) and different strengths of interactions between unlike segments are considered. The AB-contacts are energetically unprofitable. There are two phase transitions: the first-order vapor-liquid transition and the second-order structural transition in the supercritical fluid. The phase diagram topology depends on the energy u(AB). The crossover between the tricritical point phase diagram topology and the critical end phase diagram topology is found. It is demonstrated that the transition to the ordered strip-like phase is non-universal.  相似文献   

18.
19.
Monte Carlo simulations and finite-size scaling analysis have been carried out to study the critical behavior in a submonolayer lattice-gas of interacting monomers adsorbed on one-dimensional channels arranged in a triangular cross-sectional structure. Two kinds of lateral interaction energies have been considered: (1) w(L), interaction energy between nearest-neighbor particles adsorbed along a single channel and (2) w(T), interaction energy between particles adsorbed across nearest-neighbor channels. We focus on the case of repulsive transverse interactions (w(T)>0), where a rich variety of structural orderings are observed in the adlayer, depending on the value of the parameters k(B)Tw(T) (being k(B) the Boltzmann constant) and w(L)w(T). For w(L)w(T)=0, successive planes are uncorrelated, the system is equivalent to the triangular lattice, and the well-known ([square root] 3 x [square root] 3) [([square root] 3 x ([square root] 3)(*)] ordered phase is found at low temperatures and a coverage, theta, of 13. In the more general case (w(L)/w(T) not equal 0), a competition between interactions along a single channel and a transverse coupling between sites in neighboring channels leads to a three-dimensional adsorbed layer. Consequently, the ([square root] 3 x ([square root] 3) and (([square root] 3 x ([square root] 3)(*) structures "propagate" along the channels and new ordered phases appear in the adlayer. Each ordered phase is separated from the disordered state by a continuous order-disorder phase transition occurring at a critical temperature, T(c), which presents an interesting dependence with w(L)/w(T). The Monte Carlo technique was combined with the recently reported free energy minimization criterion approach (FEMCA) [F. Roma et al., Phys. Rev. B 68, 205407 (2003)] to predict the critical temperatures of the order-disorder transformation. The excellent qualitative agreement between simulated data and FEMCA results allows us to interpret the physical meaning of the mechanisms underlying the observed transitions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号