首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a more economical but similarly accurate computation method than the Ewald sum, the isotropic periodic sum (IPS) method for nonpolar molecules (IPSn) and polar molecules (IPSp), along with the Wolf method are of interest, but the cutoff radius dependence is an important issue. To evaluate the cutoff radius effect of the three methods, a water-vapor interfacial system has been studied by molecular dynamics. The Wolf method can produce adequate results for surface tension compared to that of the Ewald sum (within 2.9%) at a long enough cutoff radius, r(c). However, the estimation of the electrostatic potential profile and dipole orientational function is poor. The Wolf method cannot estimate electrostatic configuration at r(c) ≤ L(z)∕2 (L(z) is the longest lattice of the system). We have found that the convergence of the surface tension and the electrostatic configuration of the IPSn method is faster than that of the IPSp method. Moreover, the IPSn method is most accurate among the three methods for the same cutoff radius. Furthermore, the behavior of the surface tension against the cutoff radius shows a greater difference for the IPSn and IPSp method. The surface tension of the IPSp method fluctuates and presents a similar result to that of the Ewald sum, but the surface tension for the IPSn method greatly deviates near r(c) = L(z)∕3. The cause of this deviation is the difference between the interfacial configuration of the water surface and the cutoff treatment of the IPS method. The deviation becomes insignificant far from r(c) = L(z)∕3. In spite of this shortcoming, the IPSn method gives the most accurate result in estimating the surface tension at r(c) = L(z)∕2. From all the results in this work, the IPSn and IPSp method have been found to be more accurate than the Wolf method. In conclusion, the surface tension and structure of water-vapor interface can be calculated by the IPSn method when r(c) is greater than or equal to the longest lattice of the system. The IPSp method and the Wolf method require a longer cutoff radius than the longest lattice of the system to estimate interfacial properties.  相似文献   

2.
Monte Carlo simulations in the canonical, isobaric-isothermal, grand canonical, and Gibbs ensembles were used to assess whether the computationally expensive Ewald summation method for the computation of the first-order electrostatic energy can be replaced with a simpler truncation approach for accurate simulations of the saturated, superheated, and supersaturated vapor phases of dipolar and hydrogen-bonding molecules. Rotationally averaged hydrogen fluoride dimer and trimer energies, thermophysical properties and aggregation in the superheated vapor phase of hydrogen fluoride, nucleation free energy barriers for water, and the vapor–liquid coexistence properties of hydrogen fluoride and water were investigated over a wide range of state points. We find that for densities not too close to the critical density, results obtained from simulations using a spherical potential truncation based on neutral groups (molecules or fragments) for the Coulomb interactions are statistically identical to those obtained using the Ewald summation method. Use of the simpler spherical truncation results in a significant reduction of the computational effort for simulations employing molecular mechanics force fields and also allows for straightforward implementation of many-body expansion methods to compute the potential energy from electronic structure calculations of subsystems of the entire vapor-phase system.  相似文献   

3.
Molecular simulations rely heavily on a long range electrostatic Coulomb interaction. The Coulomb potential decays inversely with distance, indicating infinite effective range. In practice, molecular simulations do not directly take into account such an infinite interaction. Therefore, the Ewald, fast multipole, and cutoff methods are frequently used. Although cutoff methods are implemented easily and the calculations are fast, it has been pointed out that they produce serious artifacts. Wolf and coworkers recently discovered one source of the artifacts. They found that when the total charge in a cutoff sphere disappeared, the cutoff error is dramatically suppressed. The Wolf method uses the charge-neutral principle combined with a potential damping that is realized using a complementary error function. To date, many molecular simulation studies have demonstrated the accuracy and reliability of the Wolf method. We propose a novel long-range potential that is constructed only from the charge-neutral condition of the Wolf method without potential damping. We also show that three simulation systems, in which involve liquid sodium-chloride, TIP3P water, and a charged protein in explicit waters with neutralized ions using the new potential, provide accurate statistical and dielectric properties when compared with the particle mesh Ewald method.  相似文献   

4.
Canonical Monte Carlo (NVT-MC) simulations were performed to obtain surface tension and coexistence densities at the liquid-vapor interface of one-site associating Lennard-Jones and hard-core Yukawa fluids, as functions of association strength and temperature. The method to obtain the components of the pressure tensor from NVT-MC simulations was validated by comparing the equation of state of the associative hard sphere system with that coming from isothermal-isobaric Monte Carlo simulations. Surface tension of the associative Lennard-Jones fluid determined from NVT-MC is compared with previously reported results obtained by molecular dynamics simulations of a pseudomixture model of monomers and dimers. A good agreement was found between both methods. Values of surface tension of associative hard-core Yukawa fluids are presented here for the first time.  相似文献   

5.
We show that finite-range alternatives to the standard long-range pair potential for silica by van Beest et al. [Phys. Rev. Lett. 64, 1955 (1990)] might be used in molecular dynamics simulations. We study two such models that can be efficiently simulated since no Ewald summation is required. We first consider the Wolf method, where the Coulomb interactions are truncated at a cutoff distance rc such that the requirement of charge neutrality holds. Various static and dynamic quantities are computed and compared to results from simulations using Ewald summations. We find very good agreement for rc approximately 10 A. For lower values of rc, the long-range structure is affected which is accompanied by a slight acceleration of dynamic properties. In a second approach, the Coulomb interaction is replaced by an effective Yukawa interaction with two new parameters determined by a force fitting procedure. The same trend as for the Wolf method is seen. However, slightly larger cutoffs have to be used in order to obtain the same accuracy with respect to static and dynamic quantities as for the Wolf method.  相似文献   

6.
Molecular dynamics simulations of pure water at the liquid-vapor interface are performed using direct simulation of interfaces in a liquid slab geometry. The effect of intramolecular flexibility on coexisting densities and surface tension is analyzed. The dipole moment profile across the liquid-vapor interface shows different values for the liquid and vapor phases. The flexible model is a polarizable model. This effect is minor for liquid densities and is large for surface tension. The liquid densities increase from 2% at 300 K to 9% at 550 K when the force field is changed from a fully rigid simple point charge extended (SPCE) model to that of a fully flexible model with the same intermolecular interaction parameters. The increases in surface tension at both temperatures are around 11% and 36%, respectively. The calculated properties of the flexible models are closer to the experimental data than those of the rigid SPCE. The effect of the maximum number of reciprocal vectors (h(z) (max)) and the surface area on the calculated properties at 300 K is also analyzed. The coexiting densities are not sensitive to those variables. The surface tension fluctuates with h(z) (max) with an amplitude larger than 10 mN m(-1). The effect of using small interfacial areas is slightly larger than the error in the simulations.  相似文献   

7.
8.
The five-site transferable interaction potential (TIP5P) for water is most accurate at reproducing experimental data when used with a simple spherical cutoff for the long-ranged electrostatic interactions. When used with other methods for treating long-ranged interactions, the model is considerably less accurate. With small modifications, a new TIP5P-like potential can be made which is very accurate for liquid water when used with Ewald sums, a more physical and increasingly more commonly used method for treating long-ranged electrostatic interactions. The new model demonstrates a density maximum near 4 degrees C, like the TIP5P model, and otherwise is similar to the TIP5P model for thermodynamic, dielectric, and dynamical properties of liquid water over a range of temperatures and densities. An analysis of this and other commonly used water models reveals how the quadrupole moment of a model can influence the dielectric response of liquid water.  相似文献   

9.
We present computer simulation results for 1:1 and 2:1 electrolyte solutions in the presence of a gravitational field, using the Monte Carlo method in the NVT ensemble for the restrictive primitive model. Coulombic interactions were taken into account comparing the Ewald and Wolf methods. Three variations of Ewald summations were considered: the exact method for slab geometries (EW2D), and the three-dimensional (3D) versions with and without a dipolar correction (EW3DC and EW3D, respectively). The equivalent 3D Wolf protocols were applied under the same conditions (WF3DC and WF3D, respectively). The Wolf and Ewald methods agree accurately in the prediction of several thermodynamic and structural properties for these inhomogeneous systems: excess internal energies, isochoric heath capacities, and density and electrostatic potential profiles. The main advantage using the Wolf method is the significant saving in computing time, which is approximately six times faster than EW3D and EW3DC, and sixty times faster than EW2D.  相似文献   

10.
Classical molecular dynamics simulations have been performed to investigate the interface between liquid water and methane gas under methane hydrate forming conditions. The local environments of the water molecules were studied using order parameters which distinguish between liquid water, ice and methane hydrate phases. Bulk water and water/air interfaces were also studied to allow comparisons to be made between water molecules in the different environments and to determine the effects of the different methane densities studied. Good agreement between experimental and calculated surface tensions is obtained if long range corrections are included. The water surface is found to have a structure which is very similar to that of bulk water, but more tetrahedral, and more clathrate-like than ice-like. In these simulations the concentration of methane in water at the interface is shown to be appropriate for clathrates at higher gas densities (pressures). The orientation of water molecules around methane molecules in the interfacial region appears to depend only weakly on pressure and one of the difficulties in forming hydrate is the availability of water molecules tangential to the hydrate cage. At the interface, the water structure is more disordered than in the bulk water region with increased occurrence compared with the bulk of those angles and orientations found in the clathrate structure.  相似文献   

11.
We have obtained the interfacial properties of short rigid-linear chains formed from tangentially bonded Lennard-Jones monomeric units from direct simulation of the vapour-liquid interface. The full long-range tails of the potential are accounted for by means of an improved version of the inhomogeneous long-range corrections of Janec?ek [J. Phys. Chem. B 110, 6264-6269 (2006)] proposed recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] valid for spherical as well as for rigid and flexible molecular systems. Three different model systems comprising of 3, 4, and 5 monomers per molecule are considered. The simulations are performed in the canonical ensemble, and the vapor-liquid interfacial tension is evaluated using the test-area method. In addition to the surface tension, we also obtain density profiles, coexistence densities, critical temperature and density, and interfacial thickness as functions of temperature, paying particular attention to the effect of the chain length and rigidity on these properties. According to our results, the main effect of increasing the chain length (at fixed temperature) is to sharpen the vapor-liquid interface and to increase the width of the biphasic coexistence region. As a result, the interfacial thickness decreases and the surface tension increases as the molecular chains get longer. The surface tension has been scaled by critical properties and represented as a function of the difference between coexistence densities relative to the critical density.  相似文献   

12.
The Fourier transform Coulomb (FTC) method has been shown to be effective for the fast and accurate calculation of long-range Coulomb interactions between diffuse (low-energy cutoff) densities in quantum mechanical (QM) systems. In this work, we split the potential of a compact (high-energy cutoff) density into short-range and long-range components, similarly to how point charges are handled in the Ewald mesh methods in molecular mechanics simulations. With this linear scaling QM Ewald mesh method, the long-range potential of compact densities can be represented on the same grid as the diffuse densities that are treated by the FTC method. The new method is accurate and significantly reduces the amount of computational time on short-range interactions, especially when it is compared to the continuous fast multipole method.  相似文献   

13.
We investigate pairwise electrostatic interaction methods and show that there are viable computationally efficient (O(N)) alternatives to the Ewald summation for typical modern molecular simulations. These methods are extended from the damped and cutoff-neutralized Coulombic sum originally proposed by Wolf et al. [J. Chem. Phys. 110, 8255 (1999)]. One of these, the damped shifted force method, shows a remarkable ability to reproduce the energetic and dynamic characteristics exhibited by simulations employing lattice summation techniques. Comparisons were performed with this and other pairwise methods against the smooth particle-mesh Ewald summation to see how well they reproduce the energetics and dynamics of a variety of molecular simulations.  相似文献   

14.
We present here molecular-dynamics simulation results of the vapor-liquid coexistence curve, surface tension, and self-diffusion coefficients of sulfur hexafluoride. Sulfur hexafluoride is modeled as a rigid molecule, following the model proposed by Pawley [Mol. Phys. 43, 1321 (1981)]. Vapor-liquid coexistence curve and surface tension are obtained through direct molecular-dynamic simulations in the NVT ensemble. Simulation results are able to reproduce the qualitative shape of the vapor-liquid envelope. However, lower densities, a higher critical temperature, and an overestimated surface tension are obtained here. Those deviations are explained on the basis of the rigidity of the molecular model used. Self-diffusion coefficients are calculated from simulations in the NVE ensemble for different gas states at atmospheric pressure. The rigid model performs better for dynamical properties since simulation results provide very good agreement with available experimental data in this case.  相似文献   

15.
The particle-transfer molecular-dynamics technique is adopted to construct the Lennard-Jones fluid gas-liquid phase diagram. Detailed study of the dependence of the simulation results on the system size and the cutoff distance is performed to test the validity of the simulation technique. Both the traditional cutoff plus long-range correction (CPC) and Ewald summation methods are used in the simulations to calculate the interactions. In the intermediate range of temperatures, the results with the Ewald summation method are almost the same as those with the CPC method. However, in the range close to the critical point, the results with the CPC method deviate from those with the Ewald summation. Compared with the results obtained via the Ewald summation in a smaller system, simply increasing the system size in the CPC scheme may not give better results.  相似文献   

16.
Fully atomistic molecular dynamics simulations of amphiphilic graft copolymer molecules have been performed at a range of surface concentrations at a water/air interface. These simulations are compared to experimental results from a corresponding system over a similar range of surface concentrations. Neutron reflectivity data calculated from the simulation trajectories agrees well with experimentally acquired profiles. In particular, excellent agreement in neutron reflectivity is found for lower surface concentration simulations. A simulation of a poly(ethylene oxide) (PEO) chain in aqueous solution has also been performed. This simulation allows the conformational behavior of the free PEO chain and those tethered to the interface in the previous simulations to be compared.  相似文献   

17.
We consider the electrostatic potential in a unit cell containing N point charges Q(j) with positions r(j) inside the cell. The cell is replicated periodically in one, two, and three dimensions. The purpose is to give representations for the potential which contain only lattice sums which are absolutely convergent and uniformly convergent in the sampling position r. These representations are derived using variants of the Ewald method and are primarily intended for use in evaluating the accuracy of any algorithm to evaluate electrostatic energies and forces in simulations of dense matter, rather than necessarily for use of themselves in simulations. In reduced dimensionality the Ewald representations can be numerically inefficient and other representations are also provided with careful specification which allows two forms to be used for the potential functions in order to improve numerical performance. These mixed representations may be satisfactory in simulations.  相似文献   

18.
We investigate the impact of the treatment of electrostatic interactions on the heat conduction of liquid water. With this purpose, we report a series of non-equilibrium molecular dynamics computer simulations of the Modified Central Force Model of water. We consider both the Ewald summation approach, which includes the full range of the electrostatic interactions, and the Wolf method, which uses a cutoff to truncate the long range contributions. It is shown that the relaxation of the temperature profiles towards the stationary state solution and the equation of state of the liquid are not affected by the treatment of the electrostatic interactions. However, the truncation of the interactions results in lower internal energy fluxes as well as lower thermal conductivities. We also find that the anomalous increase of the thermal conductivity of water with temperature is reproduced by the different methods considered in this work, showing that this physical behavior is independent of the treatment of the long range electrostatic interactions.  相似文献   

19.
In this work we present a computer simulation study of charged hard spherocylinders of aspect ratio L/sigma=5, using NVT and NPT Monte Carlo methods. Coulombic interactions are handled using the Wolf method [D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, J. Chem. Phys. 110, 8254 (1999)]. Thermodynamic and structural properties are in excellent agreement with the results obtained with the standard Ewald summation method. A partial prediction of the corresponding phase diagram is obtained by studying two isotherms of this system. The stability of the liquid crystalline phases is examined and compared with the phase diagrams of neutral hard spherocylinders and dipolar hard spherocylinders.  相似文献   

20.
To explain why dynamical properties of an aqueous electrolyte near a charged surface seem to be governed by a surface charge less than the actual one, the canonical Stern model supposes an interfacial layer of ions and immobile fluid. However, large ion mobilities within the Stern layer are needed to reconcile the Stern model with surface conduction measurements. Modeling the aqueous electrolyte-amorphous silica interface at typical charge densities, a prototypical double layer system, the flow velocity does not vanish until right at the surface. The Stern model is a good effective model away from the surface, but cannot be taken literally near the surface. Indeed, simulations show no ion mobility where water is immobile, nor is such mobility necessary since the surface conductivity in the simulations is comparable to experimental values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号