首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aims of this paper are (i) to present a survey of recent advances in the analysis of superconvergence of collocation solutions for linear Volterra-type functional integral and integro-differential equations with delay functions θ(t) vanishing at the initial point of the interval of integration (with ia(t) = qt (0 < q < 1, t ⩾ 0) being an important special case), and (ii) to point, by means of a list of open problems, to areas in the numerical analysis of such Volterra functional equations where more research needs to be carried out.   相似文献   

2.
We present new oscillation criteria for the second order nonlinear neutral delay differential equation [y(t)-py(t-τ)]'+ q(t)y λ (g(t)) sgn y(g(t)) = 0, tt 0. Our results solve an open problem posed by James S.W . Wong [24]. The relevance of our results becomes clear due to a carefully selected example. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
In this paper, we use the coincidence degree theory to establish new results on the existence and uniqueness of T ‐periodic solutions for a class of nonlinear n ‐th order differential equations with delays of the form x(n)(t) + f (x(n‐ 1)(t)) + g (t, x (tτ (t))) = p (t).  相似文献   

4.
In this paper we analyse the local superconvergence propertiesof iterated piecewise polynomial collocation solutions for linearsecond-kind Volterra integral equations with (vanishing) proportionaldelays qt (0 < q < 1). It is shown that on suitable geometricmeshes depending on q, collocation at the Gauss points leadsto almost optimal superconvergence at the mesh points. Thiscontrasts with collocation on uniform meshes where the problemregarding the attainable order of local superconvergence remainsopen.  相似文献   

5.
We are concerned with the nonexistence of L2-solutions of a nonlinear differential equation x″=a(t)x+f(t,x). By applying technique similar to that exploited by Hallam [SIAM J. Appl. Math. 19 (1970) 430-439] for the study of asymptotic behavior of solutions of this equation, we establish nonexistence of solutions from the class L2(t0,∞) under milder conditions on the function a(t) which, as the examples show, can be even square integrable. Therefore, the equation under consideration can be classified as of limit-point type at infinity in the sense of the definition introduced by Graef and Spikes [Nonlinear Anal. 7 (1983) 851-871]. We compare our results to those reported in the literature and show how they can be extended to third order nonlinear differential equations.  相似文献   

6.
The main objective of this article is to study the oscillatory behavior of the solutions of the following nonlinear functional differential equations (a(t)x'(t))' δ1p(t)x'(t) δ2q(t)f(x(g(t))) = 0,for 0 ≤ t0 ≤ t, where δ1 = ±1 and δ2 = ±1. The functions p,q,g : [t0, ∞) → R, f :R → R are continuous, a(t) > 0, p(t) ≥ 0,q(t) ≥ 0 for t ≥ t0, limt→∞ g(t) = ∞, and q is not identically zero on any subinterval of [t0, ∞). Moreover, the functions q(t),g(t), and a(t) are continuously differentiable.  相似文献   

7.
We study Hessian fully nonlinear uniformly elliptic equations and show that the second derivatives of viscosity solutions of those equations (in 12 or more dimensions) can blow up in an interior point of the domain. We prove that the optimal interior regularity of such solutions is no more than C1+?, showing the optimality of the known interior regularity result. The same is proven for Isaacs equations. We prove the existence of non-smooth solutions to fully nonlinear Hessian uniformly elliptic equations in 11 dimensions. We study also the possible singularity of solutions of Hessian equations defined in a neighborhood of a point and prove that a homogeneous order 0<α<1 solution of a Hessian uniformly elliptic equation in a punctured ball should be radial.  相似文献   

8.
The method developed in [A.J. Durán, F.A. Grünbaum, Orthogonal matrix polynomials satisfying second order differential equations, Int. Math. Res. Not. 10 (2004) 461–484] led us to consider matrix polynomials that are orthogonal with respect to weight matrices W(t) of the form , , and (1−t)α(1+t)βT(t)T*(t), with T satisfying T=(2Bt+A)T, T(0)=I, T=(A+B/t)T, T(1)=I, and T(t)=(−A/(1−t)+B/(1+t))T, T(0)=I, respectively. Here A and B are in general two non-commuting matrices. We are interested in sequences of orthogonal polynomials (Pn)n which also satisfy a second order differential equation with differential coefficients that are matrix polynomials F2, F1 and F0 (independent of n) of degrees not bigger than 2, 1 and 0 respectively. To proceed further and find situations where these second order differential equations hold, we only dealt with the case when one of the matrices A or B vanishes.The purpose of this paper is to show a method which allows us to deal with the case when A, B and F0 are simultaneously triangularizable (but without making any commutativity assumption).  相似文献   

9.
We prove oscillation and nonoscillation theorems for the second order linear differential equation (E) y″+q(t)y=0, where q(t)?0 and locally integrable on These results are extensions of earlier results of Huang [J. Math. Anal. Appl. 210 (1997) 712-723]. Furthermore, we show that the oscillation criterion established for Eq. (E) can be extended to the delayed differential equation y″+q(t)y(σ(t))=0, where σ(t)?t and limt→∞σ(t)=∞.  相似文献   

10.
A time‐fractional reaction–diffusion initial‐boundary value problem with periodic boundary condition is considered on Q ? Ω × [0, T] , where Ω is the interval [0, l] . Typical solutions of such problem have a weak singularity at the initial time t = 0. The numerical method of the paper uses a direct discontinuous Galerkin (DDG) finite element method in space on a uniform mesh, with piecewise polynomials of degree k ≥ 2 . In the temporal direction we use the L1 approximation of the Caputo derivative on a suitably graded mesh. We prove that at each time level of the mesh, our L1‐DDG solution is superconvergent of order k + 2 in L2(Ω) to a particular projection of the exact solution. Moreover, the L1‐DDG solution achieves superconvergence of order (k + 2) in a discrete L2(Q) norm computed at the Lobatto points, and order (k + 1) superconvergence in a discrete H1(Q) seminorm at the Gauss points; numerical results show that these estimates are sharp.  相似文献   

11.
This paper analyzes a class of two-dimensional (2-D) time fractional reaction-subdiffusion equations with variable coefficients. The high-order L2-1σ time-stepping scheme on graded meshes is presented to deal with the weak singularity at the initial time t = 0, and the bilinear finite element method (FEM) on anisotropic meshes is used for spatial discretization. Using the modified discrete fractional Grönwall inequality, and combining the interpolation operator and the projection operator, the L2-norm error estimation and H1-norm superclose results are rigorously proved. The superconvergence result in the H1-norm is derived by applying the interpolation postprocessing technique. Finally, numerical examples are presented to verify the validation of our theoretical analysis.  相似文献   

12.
We use the Floquet theory of the Hill's equation to prove the conjecture that all solutions of the second order forced linear differential equation y+c(sint)y=cost, are oscillatory on [0,∞) for all c≠0.  相似文献   

13.
This paper introduces an approximate solution for Liouville‐Caputo variable order fractional differential equations with order 0 < α(t) ≤ 1 . The solution is adapted using a family of fractional‐order Chebyshev functions with unknown coefficients. These coefficients have been obtained by using an optimization approach based on minimax technique and the least pth optimization function. Several linear and nonlinear fractional‐order differential equations are discussed using the proposed technique for fixed and variable order fractional‐order derivatives. Moreover, the response of RC charging circuit with variable order fractional capacitor is studied for different cases. Several comparisons with related published techniques have been added to illustrate the accuracy of the proposed approach.  相似文献   

14.
We investigate a linear homotopyF(·,t) connecting an appropriate smooth equationG=0 with Kojima's (nonsmooth) systemK=0 describing critical points (primal —dual) of a nonlinear optimization problem (NLP) in finite dimension.Fort=0, our system may be seen e.g. as a starting system for an embedding procedure to determine a critical point to NLP. Fort1, it may be regarded as a regularization ofK.Conditions for regularity (necessary and sufficient) and solvability (sufficient) are studied. Though, formally, they can be given in a unified way, we show that their meaning differs fort < 1 andt=1. Particularily, no MFCQ-like condition must be imposed in order to ensure regularity fort < 1.  相似文献   

15.
This paper is concerned with the study of the large-time behavior of the solutions u of a class of one-dimensional reaction–diffusion equations with monostable reaction terms f, including in particular the classical Fisher-KPP nonlinearities. The nonnegative initial data u 0(x) are chiefly assumed to be exponentially bounded as x tends to + ∞ and separated away from the unstable steady state 0 as x tends to ? ∞. On the one hand, we give some conditions on u 0 which guarantee that, for some λ > 0, the quantity c λ = λ +f′(0)/λ is the asymptotic spreading speed, in the sense that lim  t→+∞ u(t, ct) = 1 (the stable steady state) if c < c λ and lim  t→+∞ u(t, ct) = 0 if c > c λ. These conditions are fulfilled in particular when u 0(xe λx is asymptotically periodic as x → + ∞. On the other hand, we also construct examples where the spreading speed is not uniquely determined. Namely, we show the existence of classes of initial conditions u 0 for which the ω-limit set of u(t, ct + x) as t tends to + ∞ is equal to the whole interval [0, 1] for all x ∈ ? and for all speeds c belonging to a given interval (γ1, γ2) with large enough γ1 < γ2 ≤ + ∞.  相似文献   

16.
ON THE DIFFUSION PHENOMENON OF QUASILINEAR HYPERBOLICWAVES   总被引:1,自引:0,他引:1  
Introduction1.1.ConsiderthefollowingquasilinearhyperbolicCauchyproblemwithlineardamping{:;;!OTt=-:i<:,;>>L06,(11)wherexER",t20,anda(.)isasmoothfunctionsatisfyinga(y)~1 O(lyl")aslyl-0,orEN.(1.2)Thepurposeofthispaperistoshowthat,atleastwhenn53,theasymptoticprofileofthesolutionu(x,t)of(l.1)isgivenbythesolutionv(x,t)ofthecorrespondingparabolicproblem{:;.t>ivj:相似文献   

17.
This paper is Part III of the study on blending surfaces by partial differential equations (PDEs). The blending surfaces in three dimensions (3D) are taken into account by three parametric functions, x(r,t),y(r,t) and z(r,t). The boundary penalty techniques are well suited to the complicated tangent (i.e., normal derivative) boundary conditions in engineering blending. By following the previous papers, Parts I and II in Li (J. Comput. Math. 16 (1998) 457–480; J. Comput. Appl. Math. 110 (1999) 155–176) the corresponding theoretical analysis is made to discover that when the penalty power σ=2, σ=3 (or 3.5) and 0<σ1.5 in the boundary penalty finite element methods (BP-FEMs), optimal convergence rates, superconvergence and optimal numerical stability can be achieved, respectively. Several interesting samples of 3D blending surfaces are provided, to display the remarkable advantages of the proposed approaches in this paper: unique solutions of blending surfaces, optimal blending surfaces in minimum energy, ease in handling the complicated boundary constraint conditions, and less CPU time and computer storage needed. This paper and Li (J. Comput. Math. 16 (1998) 457–480; J. Comput. Appl. Math.) provide a foundation of blending surfaces by PDE solutions, a new trend of computer geometric design.  相似文献   

18.
In this article, we consider the finite volume element method for the second‐order nonlinear elliptic problem and obtain the H1 and W1, superconvergence estimates between the solution of the finite volume element method and that of the finite element method, which reveal that the finite volume element method is in close relationship with the finite element method. With these superconvergence estimates, we establish the Lp and W1,p (2 < p ≤ ∞) error estimates for the finite volume element method for the second‐order nonlinear elliptic problem. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

19.
We study the optimal order of approximation for |x| α (0 < α < 1) by Lagrange interpolation polynomials based on Chebyshev nodes of the first kind. It is proved that the Jackson order of approximation is attained. Supported by the NSFC, 10601065.  相似文献   

20.
We consider the solutions of degenerate parabolic equations and inequalities of the formLu-u t = |u| q sgnu and sgnu(Lu−u t )−|u| q ≥0, 0<q<1, with the elliptic operatorL in divergent or nondivergent form. We establish a dependence of the maximum modulus of the solution on the domain and on the equation (inequality) such that this dependence guarantees the existence of a “dead zone” of the solution. In this case, the character of degeneracy is unessential. Translated fromMatematicheskie Zametki, Vol. 60, No. 6, pp. 824–831, December, 1996.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号