首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reaction of PNPCo, where PNP is (tBu2PCH2SiMe2)2N-, with the persistent radical galvinoxyl, G, gives PNPCoIIG, a nonplanar S = 3/2 species. Reaction with PhCH2Cl or with 0.5 mol I2 gives PNPCoX (X = Cl or I, respectively), but additional I2, seeking CoIII, gives instead oxidation at phosphorus: (tBu2P(I)CH2SiMe2NSiMe2CH2PtBu2)CoI2. Hydrogen-atom transfer reagents fail to give PNPCoH, but H2 gives instead PNPCo(H)2, a result rationalized thermodynamically based on DFT calculations. Multiple equiv of PhSiH3 give a product of Co(V), where N/SiPh and P/Si bonds have formed. N2CH(SiMe3) gives a 1:1 adduct of PNPCo, whose metric parameters suggest partial oxidation above CoI; N2CHPh gives a 1:1 adduct but with very different spectroscopic features. PhN3 reacts fast, via several intermediates detected below 0 degrees C, to finally release N2 and form a CoI product where one phosphorus has been oxidized, PN(P=NPh)Co. Whereas PNPCo(N3) resists loss of N2 on heating, one electron oxidation gives a rapid loss of N2, and the remaining nitride nitrogen is quickly incorporated into the chelate ligand, giving [tBu2PCH2SiMe2NSiMe2NP(tBu2)=CH2Co]. O2 or PhI=O generally gives products where one or both phosphorus centers are converted to its oxide, bonded to cobalt.  相似文献   

2.
The four-coordinate compound [(tBu2PCH2SiMe2)2N]RuCH3 undergoes rapid double H-C(sp3) activation at -78 degrees C to generate a "hydrido-carbene" complex. DFT calculations suggest that the origin of the low barrier to methane elimination is an alpha-agostic interaction in the low-lying singlet state of the highly unsaturated (PNP)RuMe. The hydrido-carbene complex can be viewed as a "masked" resting state of the four-coordinate cyclometalated alkyl complex, [(tBu2PCH2SiMe2)N(Me2SiCH2P(tBu)(C(CH3)2CH2)]Ru, where hydride migration from metal to carbon occurs before any subsequent reactivity.  相似文献   

3.
The synthesis of (PNP)FeCl, (PNP)Fe[NH(xylyl)], and (PNP)FeN3 are reported(PNP = (tBu2PCH2SiMe2)2N-). While the azide is thermally stable, it is photosensitive to lose N2 and form [(PNPN)Fe]2,in which the nitride ligand has formed a double bond to one phosphorus, and this N bridges to a second iron to form a 2-fold symmetric dimer. The reaction energy to form the (undetected) monomeric [eta3- tBu2PCH2SiMe2NSiMe2CH2PtBu2N]Fe is -15.9 kcal/mol, so this PIII --> PV oxidation is favorable. The eta2 version of this same species is less stable by 23.7 kcal/mol, which shows that the loss of one P--> Fe bond is caused by dimerization, and therefore, it does not precede and cause dimerization. A comparison is made to Ru analogs.  相似文献   

4.
Replacement of chloride in (PNP)RuCl, PNP = (tBu2PCH2SiMe2)2N, by Me3SiN3 gives a pre-redox adduct that, already at -30 degrees C, releases N2 to produce the mononuclear nonplanar Ru(IV) nitride (PNP)RuN, characterized by spectroscopic and X-ray methods. DFT calculations show the planar structure to be only 1.6 kcal/mol less stable, which explains the time-averaged simplicity of the 1H NMR spectrum, as well as the large vibrational amplitude of the nitride ligand.  相似文献   

5.
The ligand (tBu2PCH2SiMe2)2N1- (PNP) in [PNP]RuCl leads to an intermediate spin ground state, S = 1, which has been characterized by NMR and X-ray diffraction as having a planar structure. This spin state is attributed in part to N --> Ru pi donation. DFT calculations confirm that the singlet state lies higher in energy and is nonplanar. The molecule is converted to a diamagnetic product by addition of 2 mol of PhCN. The half-filled orbitals of the S = 1 state are suggested to be the reason agostic interactions do not compensate for the 14-valence electron count.  相似文献   

6.
The three-coordinate, T-shaped Co(I) complex, PNPCo (PNP = [(tBu2PCH2SiMe2)2N-], is readily synthesized by magnesium reduction of divalent PNPCoCl. Triplet (S = 1) PNPCo is coordinatively and electronically unsaturated and undergoes a thermally reversible oxidative addition reaction with H2, producing trivalent PNPCo(H)2. In contrast, the reaction with excess primary silane PhSiH3 quantitatively generates the base-stabilized silylene Co(V) compound {kappa2-tBu2PCH2Me2SiNSiMe2CH2tBu2P(H)Si=}Co(H)3(SiH2Ph)2.  相似文献   

7.
Ingleson MJ  Pink M  Fan H  Caulton KG 《Inorganic chemistry》2007,46(24):10321-10334
The compounds (PNP)CoX, where PNP is (tBu2PCH2SiMe2)2N- and X is Cl, I, N3, OAr, OSO2CF3 and N(H)Ar, are reported. Some of these show magnetic susceptibility, color, and 1H NMR evidence of being in equilibrium between a blue, tetrahedral S=3/2 state and a red, planar S=1/2 state; the equilibrium populations are influenced by subtle solvent effects (e.g., benzene and cyclohexane are different), as well as by temperature. Attempted oxidation to Co(III) with O2 occurs instead at phosphorus, giving [P(O)NP(O)]CoX species. The single O-atom transfer reagent PhI=O likewise oxidizes P. Even I2 oxidizes P to give the pendant phosphonium species (tBu2P(I)CH2SiMe2NSiMe2CH2PtBu2)CoI2 with a tetrahedral S=3/2 cobalt; the solid-state structure shows intermolecular PI...ICo interactions. Attempted alkyl metathesis of PNPCoX inevitably results in reduction, forming PNPCo, which is a spin triplet with planar T-shaped coordination geometry with no agostic interaction. Triplet PNPCo binds N2(weakly) and CO (whose low CO stretching frequency indicates strong PNP-->Co donor power), but not ethene or MeCCMe.  相似文献   

8.
Reaction of (PNP)Ni, where PNP is [((t)Bu2PCH2SiMe2)2N](-1), with CO2 occurs rapidly even at -60 degrees C to form exclusively the product of transposition of the amide N and one CO2 oxygen: [((t)Bu2PCH2SiMe2)2O]Ni(NCO). DFT(B3LYP) evaluation of several candidate intermediates for breaking two Si/N and one C/O bond and forming two Si/O and one N/C bond reveal species at and below the energy of the separated particles, and establish the location of the spin densities in each.  相似文献   

9.
Exchange of deuterium in d6-benzene with all C-H sites in (PNP)Ru(OTf), where PNP is N(SiMe2CH2PtBu2)2 and OTf is OSO2CF3, is rapid at 22 degrees C. Although intact planar triplet (PNP)Ru(OTf) binds N2 only very weakly, these reagents are observed to react rapidly to give a diamagnetic 1:1 adduct whose structure has one tBu C-H bond cleaved: the carbon binds to Ru but the hydrogen is on the PNP nitrogen, creating a secondary amine ligand bound to RuII. It is suggested that the benzene C-D cleavage and the N2 product of tBu C-H bond heterolysis both derive from a common intermediate, [HN(SiMe2CH2PtBu2)(SiMe2CH2PtBuCMe2CH2)] Ru(OTf); the formation energy and structure of this species are discussed on the basis of DFT results.  相似文献   

10.
[Rh(III)H{(tBu(2)PCH(2)SiMe(2)NSiMe(2)CH(2)PtBu{CMe(2)CH(2)})}], ([RhH(PNP*)]), reacts with O(2) in the time taken to mix the reagents to form a 1:1 eta(2)-O(2) adduct, for which O--O bond length is discussed with reference to the reducing power of [RhH(PNP*)]; DFT calculations faithfully replicate the observed O-O distance, and are used to understand the oxidation state of this coordinated O(2). The reactivity of [Rh(O(2))(PNP)] towards H(2), CO, N(2), and O(2) is tested and compared to the associated DFT reaction energies. Three different reagents effect single oxygen atom transfer to [RhH(PNP*)]. The resulting [RhO(PNP)], characterized at and above -60 degrees C and by DFT calculations, is a ground-state triplet, is nonplanar, and reacts, above about +15 degrees C, with its own tBu C--H bond, to cleanly form a diamagnetic complex, [Rh(OH){N(SiMe(2)CH(2)PtBu(2))(SiMe(2)CH(2)PtBu{CMe(2)CH(2)})}].  相似文献   

11.
Linear triphenol H3[RO3] (2,6-bis(3-tert-butyl-5-methyl-2-hydroxybenzyl)-4-R-phenol; R = Me, tBu) was found to undergo selective mono-deprotonation and mono-O-methylation. Deprotonation of H3[RO3] with 1 equiv of nBuLi resulted in the formation of Li{H2[RO3]}(Et2O)2 (R = Me (1a), tBu (1b)), in which the central phenol unit was lithiated. Treatment of H3[RO3] with methyl p-toluenesulfonate in the presence of K2CO3 in CH3CN gave the corresponding anisol-diphenol H2[RO2O] (2,6-bis(3-tert-butyl-5-methyl-2-hydroxybenzyl)-4-R-anisole; R = Me (2a), tBu (2b)). Reaction of H2[RO2O] with 2 equiv of nBuLi gave the dilithiated derivatives Li2[RO2O]. The lithium salts were reacted with ZrCl4 in toluene/THF to obtain the dichloride complex [RO2O]ZrCl2(thf) (R = Me (3a), tBu (3b)). 3b underwent dimerization along with a loss of THF to generate {[tBuO2O]ZrCl2}2 (4), whereas 4 was dissolved in THF to regenerate the monomer 3b. Alkylation of 3 with MeMgBr, PhCH2MgCl, and Me3SiCH2MgCl gave [MeO2O]ZrMe2(thf) (5), [RO2O]Zr(CH2Ph)2 (R = Me (6a), tBu (6b)), and [tBuO2O]Zr(CH2SiMe3)2 (7), respectively. Reaction of 3b with LiBHEt3 produced the hydride-bridged dimer [Li2(thf)4Cl]{[tBuO3]Zr}2(micro-H)3} (8), in which demethylation of the dianionic [tBuO2O] ligand took place to give the trianionic [tBuO3] ligand. The X-ray crystal structures of 1b, 2a, 3a, 4, 6a, and 7 were reported.  相似文献   

12.
Palladium fluorophenyl complexes with different pincer ligands Pd(Ar)[2,6-(tBu(2)PCH(2))(2)C(6)H(3)] (13), Pd(Ar)[2,6-(tBu(2)PO)(2)C(6)H(3)] (14), Pd(Ar)[{2,5-(tBu(2)PCH(2))(2)C(5)H(2)}Fe(C(5)H(5))] (15), and Pd(Ar)[{2,5-(tBu(2)PCH(2))(2)C(5)H(2)}Ru(C(5)H(5))] (16) were synthesized by the reaction of LiAr (Ar = C(6)H(4)F-4) with the respective trifluoroacetate palladium pincer complexes 9-12. The molecular structures of 14 and 16 were determined by an X-ray crystallographic method. Complexes 13-16 and {Pd(Ar)[{2,5-(tBu(2)PCH(2))(2)C(5)H(2)}Fe(C(5)H(5))]}PF(6) (17) were studied by multinuclear NMR spectroscopy and cyclic voltammetry. On the basis of (19)F NMR chemical shifts and (1)J((13)C-(19)F) coupling constants, as well as Pd(II)/Pd(IV) oxidation potentials, electronic characteristics of the corresponding pincer ligands were elucidated.  相似文献   

13.
[(Ru(eta(6)-p-cymene)(mu-Cl)Cl)(2)] and [(Ru(eta(3):eta(3)-C(10)H(16))(mu-Cl)Cl)(2)] react with Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2) (R = Et (1a), Ph (1b)) affording complexes [Ru(eta(6)-p-cymene)Cl(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et (2a), Ph (2b)) and [Ru(eta(3):eta(3)-C(10)H(16))Cl(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et (6a), Ph (6b)). While treatment of 2a with 1 equiv of AgSbF(6) yields a mixture of [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OEt)(2)]Ph(2))][SbF(6)] (3a) and [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,N-Ph(2)PCH(2)P[=NP(=O)(OEt)(2)]Ph(2))][SbF(6)] (4a), [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OPh)(2)]Ph(2))][SbF(6)] (3b) and [Ru(eta(3):eta(3)-C(10)H(16))Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)] (R = Et (7a), Ph (7b)) are selectively formed from 2b and 6a,b. Complexes [Ru(eta(6)-p-cymene)(kappa(3)-P,N,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)](2) (R = Et (5a), Ph (5b)) and [Ru(eta(3):eta(3)-C(10)H(16))(kappa(3)-P,N,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)](2) (R = Et (8a), Ph (8b)) have been prepared using 2 equiv of AgSbF(6). The reactivity of 3-5a,b has been explored allowing the synthesis of [Ru(eta(6)-p-cymene)X(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et, Ph; X = Br, I, N(3), NCO (9-12a,b)). The catalytic activity of 2-8a,b in transfer hydrogenation of cyclohexanone, as well as theoretical calculations on the models [Ru(eta(6)-C(6)H(6))Cl(kappa(2)-P,N-H(2)PCH(2)P[=NP(=O)(OH)(2)]H(2))]+ and [Ru(eta(6)-C(6)H(6))Cl(kappa(2)-P,O-H(2)PCH(2)P[=NP(=O)(OH)(2)]H(2))]+, has been also studied.  相似文献   

14.
The ruthenium(IV) nitride complex (PNP)RuN (PNP = (tBu2PCH2-SiMe2)2N-) reacts rapidly with 2NO to form (PNP)Ru(NO) and N2O, via no detectable intermediate. The linear nitrosyl complex has a planar structure. In a slower reaction, (PNP)RuN reacts with N2O by O-atom transfer (established by 15N labeling) to give the same nitrosyl complex and N2. Density functional theory (B3LYP) calculations show both reactions to be very thermodynamically favorable. Analysis of possible intermediates in each reaction shows that radical (PNP)RuN(NO) has much spin density on nitride N (hence, N2-), while one 2 + 3 metallacycle, (PNP)RuN3O, has the wrong connectivity to form a product. Instead, an intermediate with a doubly bent N2O (hence, a two-electron reduced N-nitrosoimide form) brings the O atom in proximity to the nitride N on the path to a product.  相似文献   

15.
Treatment of the U(III)-ylide adduct U(CH(2)PPh(3))(NR(2))(3) (1, R = SiMe(3)) with TEMPO generates the U(V) oxo metallacycle [Ph(3)PCH(3)][U(O)(CH(2)SiMe(2)NSiMe(3))(NR(2))(2)] (2) via O-atom transfer, in good yield. Oxidation of 2 with 0.85 equiv of AgOTf affords the neutral U(VI) species U(O)(CH(2)SiMe(2)NSiMe(3))(NR(2))(2) (3). The electronic structures of 2 and 3 are investigated by DFT analysis. Additionally, the nucleophilicity of the oxo ligands in 2 and 3 toward Me(3)SiI is explored.  相似文献   

16.
Scalemic mixtures of chiral anisyl fenchols with different ortho-substituents (X) in the anisyl moieties [X = H (1), Me (2), SiMe3 (3) and tBu (4)] are employed as pre-catalysts in enantioselective additions of diethylzinc to benzaldehyde. While a remarkable asymmetric depletion is apparent for X = H and Me, a linear relationship between the enantiomeric purity of the chiral source and the product 1-phenylpropanol is observed for X = SiMe3 and tBu. X-ray single crystal analyses show that racemic methylzinc fencholates obtained from 1 (X = H) and 2 (X = Me) yield homochiral dimeric complexes, while for 3 (X = SiMe3) and 4 (X = tBu) the heterochiral dimeric alkylzinc structures are formed. The enantiopure fenchols 1-4 all yield homochiral dimeric methylzinc complexes. Computed relative energies of homo- and heterochiral fencholate dimers with X = H and Me reveal an intrinsic preference for the formation of the homochiral dimers, consistent with the observed negative NLE. In contrast, similar stabilities are computed for homo- and heterochiral complexes of ligands 3 (X = SiMe3) and 4 (X = tBu), in agreement with the absence of a nonlinear effect for bulky ortho-subsituents.  相似文献   

17.
The chloro-bridged interpnictogen compounds [tBu?PhSiE{BiClCH(SiMe?)?}?] (E = P (4), As (5)) can be synthesized by the reaction of [tBu?PhSiELi?] (E = P (2), As (3)) with (Me?Si)?CHBiCl? in a molar ratio of 1?:?2. The reaction of iPr?SiAs(SiMe?)? with (Me?Si)?CHBiCl? yields the analogous compound [iPr?SiAs{BiClCH(SiMe?)?}?] (6) as well as the diarsine species [As{BiClCH(SiMe?)?}?]? (7). Preparation of 7 is also possible in the reaction of As(SiMe?)? with (Me?Si)?CHBiCl?. Starting from (Me?Si)?SiTeSiMe?, the Bi/Te compounds [{(Me?Si)?SiTe}?BiR] (R = CH(SiMe?)? (8), C(SiMe?)? (9)) are obtained by the reaction with RBiCl? (R = CH(SiMe?)?, C(SiMe?)? (1)). The intermediate and final products are characterized by multinuclear NMR spectroscopy and IR spectroscopy. Furthermore, crystal structures determined by X-ray diffraction are described for compounds 1 and 3-9.  相似文献   

18.
以Ph3CB(C6F5)4/iBu3Al作为助催化体系,研究了单氯半茂型催化剂,ClCp′Zr[X-2-R1-4-R2-6-(Ph2P=O)C6H2]2(Cp′=C5H5,a:X=O,R1=Ph,R2=H;b:X=O,R1=F,R2=H;c:X=O,R1=tBu,R2=H;d:X=O,R1=R2=tBu;e:X=O,R1=SiMe3,R2=H;f:X=S,R1=SiMe3,R2=H;Cp′=C5Me5;g:X=O,R1=SiMe3,R2=H)的乙烯高温(50~125 ℃)聚合行为。 结果表明,催化剂a~d可在高温(50~100 ℃)下高效引发乙烯聚合,最佳反应温度为75 ℃。 适当增大R1取代基的位阻或引入吸电子取代基均有利于提高催化活性。 三甲基硅烷基取代的催化剂[WTHZ]e[WTBZ]耐高温性能较催化剂a~d大大提升,在100 ℃时,乙烯聚合活性可达5628 kg/(mol Zr·h)。 金属中心的配位原子及茂环上取代基团的改变对催化活性和聚合物的相对分子质量分布有一定的影响。  相似文献   

19.
Thermolysis of solid [Ru(d(t)bpe)(CO)2Cl2](2, d(t)bpe =(t)Bu2PCH2CH2P(t)Bu2) under vacuum affords the five-coordinate complex [Ru(d(t)bpe)(CO)Cl2] (4), which was shown by X-ray crystallography to contain a weak remote agostic interaction. In solution, 4 can be readily trapped by CO, CH3CN or water to give [Ru(d(t)bpe)(CO)(L)Cl2](L = CO, 2; L = CH3CN, 6; L = H2O, 7). Reaction of 4 with AgOTf/H2O yields the tris-aqua complex [Ru(d(t)bpe)(CO)(H2O)3](OTf)2 (8), which has been structurally characterised and probed in solution by pulsed-gradient spin echo (PGSE) NMR spectroscopy. The water ligands in 8 are labile and easily substituted to give [Ru(d(t)bpe)(CO)(NCCH3)3](OTf)2 (10) and [Ru(d(t)bpe)(CO)(DMSO)3](OTf)2 (11). In the presence of CO, the tris-aqua complex undergoes water-gas shift chemistry with formation of the cationic hydride species [Ru(d(t)bpe)(CO)3H](OTf) (12) and CO2. X-Ray crystal structures of complexes 2, 4, 6, 8 and 11-12 are reported along with those for [{Ru(d(t)bpe)(CO)}2(mu-Cl)2(mu-OTf)](OTf) (3), [{Ru(d(t)bpe)(CO)}2(mu-Cl)3][Ru(d(t)bpe)(CO)Cl3](5) and [Ru(d(t)bpe)(CO)(H2O)2(OTf)](OTf)(9).  相似文献   

20.
The reaction of phenyl azide with (PNP)Ni, where PNP = ( (t)Bu 2PCH 2SiMe 2) 2N (-), promptly evolves N 2 and forms a P=N bond in the product (PNP=NPh)Ni (I). A similar reaction with (PNP)FeCl proceeds to form a P=N bond but without N 2 evolution, to furnish (PNP=N-N=NPh)FeCl. An analogous reaction with (PNP)RuCl occurs with a more dramatic redox change at the metal (and N 2 evolution), to give the salt composed of (PNP)Ru(NPh) (+) and (PNP)RuCl 3 (-), together with equimolar (PNP)Ru(NPh). The contrast among these results is used to deduce what conditions favor N 2 loss and oxidative incorporation of the NPh fragment from PhN 3 into a metal complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号