首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The propagation and reflection of one-dimensional plane unsteady waves and pulses in a mixture of a fluid with two-phase bubbles containing evaporating drops is investigated. A significant effect of unsteady evaporation of the drops in the zone ahead of the shock wave on the wave propagation is demonstrated. The evaporation of the drops results in a pressure increase ahead of the wave and the shock wave as it were climbs to increasing pressure level. In contrast to bubbly fluids with single-phase bubbles, in a fluid with two-phase bubbles, at a fixed phase volume fraction, a decrease in bubble size results in an increase rather than a decrease of the oscillation amplitude. The wave reflection from a solid wall is essentially nonlinear and the maximum pressure attained at the wall is several times greater than the incident-wave intensity.  相似文献   

2.
The detailed analysis of the dynamical process of coin tossing is made. Through calculations, it is illustrated how and why the result is extremely sensitive to the initial conditions. It is also shown that, as the initial height of the mass center of the coin increases, the final configuration, i.e. head or tail, becomes more and more sensitive to the initial parameters (the initial velocity angular velocity, and the initial orientation), the coefficient of the air drag, and the energy absorption factor of the surface on which the coin bounces. If we keep the head upward initially but allow a small range for the change of some other initial parameters, the frequency that the final configuration is head, would be 1 if the initial height h of the mass center is sufficiently small, and would be clo to 1/2 if h is sufficiently large. An interesting question is how this frequency changes continuously from 1 to 1/2 as h increases. Detailed calculations show that such a transition is very similar to the transition from laminar to turbulent flows. A basic difference between the transition stage and the completely random stage is indicated: In the completely random stage, the deterministic process of the individual case is extremely sensitive to the initial conditions and the dynamical parameters, out the statistical properties of the ensemble are insensitive to the small changes of the initial conditions and the dynamical parameters. On the contrary, in the transition stage, both the deterministic process of the individual case and the statistical properties of the ensemble are sensitive to the initial conditions and the dynamical parameters. The mechanism for this feature of the transition stage is the existence of the long-train structure in the parameter space. The illuminations of this analysis on some other random phenomena are discussed.  相似文献   

3.
Interfacial mass transfer from vapor bubbles affects markedly the heat transfer efficiency of nucleate boiling. The position of the interfacial zone that exhibits zero net mass flux, namely, the zero-flux zone, represents an essential parameter in detailed modeling works on nucleate boiling. Assuming a linear temperature profile in the superheated liquid adjacent to the heating wall, our previous work (Li et al. [10]) demonstrated the zero-flux angle as a function of wall superheat, solid-liquid- vapor contact angle, and bubble growth rate. To make a more realistic framework, we refined in this paper the proposed mass flux model by taking into account the role of thermocapillary flow that is induced by the temperature gradient around the vapor bubble, and that of non-condensable gas presented in the boiling liquid. The Hertz-Kundsen-Schrage equation describes the interfacial mass flux distribution along the vapor bubble surface. Owing to the flattened temperature distribution produced by thermocapillary flow, which significantly reduces the interfacial area to evaporation, the zero-flux zone shifts to the bubble base with most of the cap regime to condense vapor at the interface and to produce the thermal jet. This occurrence also weakens the dependence of bubble growth rate and of the contact angle on the location of zero-flux zone, and yields early occurrence of the non-condensation limit at which the entire bubble surface is subjected to evaporation. Sensitivity analysis demonstrated the significance of process parameters on the evaluation of zero-flux angle using the HKS equation.  相似文献   

4.
A solution is obtained for the relationship between load, displacement and inner contact radius for an axisymmetric, spherically concave, rigid punch, indenting an elastic half-space. Analytic approximations are developed for the limiting cases in which the ratio of the inner and outer radii of the annular contact region is respectively small and close to unity. These approximations overlap well at intermediate values. The same method is applied to the conically concave punch and to a punch with a central hole. , , . , . . .  相似文献   

5.
In this paper the flow is studied of an incompressible viscous fluid through a helically coiled annulus, the torsion of its centre line taken into account. It has been shown that the torsion affects the secondary flow and contributes to the azimuthal component of velocity around the centre line. The symmetry of the secondary flow streamlines in the absence of torsion, is destroyed in its presence. Some stream lines penetrate from the upper half to the lower half, and if is further increased, a complete circulation around the centre line is obtained at low values of for all Reynolds numbers for which the analysis of this paper is valid, being the ratio of the torsion of the centre line to its curvature.Nomenclature A =constant - a outer radius of the annulus - b unit binormal vector to C - C helical centre line of the pipe - D rL - g 1000 - K Dean number=Re2 - L 1+r sin - M (L 2+ 2 r 2)1/2 - n unit normal vector to C - P, P pressure and nondimensional pressure - p 0, p pressures of O(1) and O() - Re Reynolds number=aW 0/ - (r, , s), (r, , s) coordinates and nondimensional coordinates - nonorthogonal unit vectors along the coordinate directions - r 0 radius of the projection of C - t unit tangent vector to C - V r, V , V s velocity components along the nonorthogonal directions - Vr, V, V s nondimensional velocity components along - W 0 average velocity in a straight annulus Greek symbols , curvature and nondimensional curvature of C - U, V, W lowest order terms for small in the velocity components along the orthogonal directions t - r, , s first approximations to V r , V, V s for small - =/=/ - kinematic viscosity - density of the fluid - , torsion and nondimensional torsion of C - , stream function and nondimensional stream function - nondimensional streamfunction for U, V - a inner radius of the annulus After this paper was accepted for publication, a paper entitled On the low-Reynolds number flow in a helical pipe, by C.Y. Wang, has appeared in J. Fluid. Mech., Vol 108, 1981, pp. 185–194. The results in Wangs paper are particular cases of this paper for =0, and are also contained in [9].  相似文献   

6.
The paper describes an experimental study of thermal fluctuations during transition from bubble to film boiling of water on a wire heater and fluctuations of the shape of a superheated liquid jet discharged from a highpressure vessel. It is found that for a heattransfer crisis on the wire heater and for intense volume boiling of the superheated liquid jet, the fluctuation power spectrum has a lowfrequency component (flicker noise) that diverges under the law 1/f. This effect is due to nonequilibrium phase transitions in the system: the heattransfer crisis during transition from bubble to film boiling and a flow crisis during boiling of the superheated liquid jet.  相似文献   

7.
An equation is derived for the ascent velocity of large gas bubbles in a liquid. This velocity is assumed to be governed by the propagation of a wavelike perturbation caused by the bubble in the liquid.Notation w bubble (or drop) velocity - specific gravity - dynamic viscosity - kinematic viscosity - r bubble (or drop) radius - surface tension - coefficient of friction - g gravitational acceleration - D bubble (or drop) diameter - p pressure - c propagation velocity of the wavelike perturbation - wavelength  相似文献   

8.
In this work we consider transport in ordered and disordered porous media using singlephase flow in rigid porous mediaas an example. We defineorder anddisorder in terms of geometrical integrals that arise naturally in the method of volume averaging, and we show that dependent variables for ordered media must generally be defined in terms of thecellular average. The cellular average can be constructed by means of a weighting function, thus transport processes in both ordered and disordered media can be treated with a single theory based on weighted averages. Part I provides some basic ideas associated with ordered and disordered media, weighted averages, and the theory of distributions. In Part II a generalized averaging procedure is presented and in Part III the closure problem is developed and the theory is compared with experiment. Parts IV and V provide some geometrical results for computer generated porous media.Roman Letters A interfacial area of the- interface contained within the macroscopic region, m2 - Ae area of entrances and exits for the-phase contained within the macroscopic system, m2 - g gravity vector, m/s2 - I unit tensor - K traditional Darcy's law permeability tensor, m2 - L general characteristic length for volume averaged quantities, m - characteristic length (pore scale) for the-phase - (y) weighting function - m(–y) (y), convolution product weighting function - v special weighting function associated with the traditional averaging volume - N unit normal vector pointing from the-phase toward the-phase - p pressure in the-phase, N/m2 - p0 reference pressure in the-phase, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - r0 radius of a spherical averaging volume, m - r position vector, m - r position vector locating points in the-phase, m - averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - v velocity vector in the-phase, m/s - v traditional superficial volume averaged velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V/V, volume average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2  相似文献   

9.
T. Dabak  O. Yucel 《Rheologica Acta》1986,25(5):527-533
A method is proposed for determining the shear viscosity behavior of highly concentrated suspensions at low and high shear-rates through the use of a formulation that is a function of three parameters signifying the effects of particle size distribution. These parameters are the intrinsic viscosity [], a parametern that reflects the level of particle association at the initiation of motion and the maximum packing concentration m. The formulation reduces to the modified Eilers equation withn = 2 for high shear rates. An analytical method was used for the calculation of maximum packing concentration which was subsequently correlated with the experimental values to account for the surface induced interaction of particles with the fluid. The calculated values of viscosities at low and high shear-rates were found to be in good agreement with various experimental data reported in literature. A brief discussion is also offered on the reliability of the methods of measuring the maximum packing concentration. r = /0 relative viscosity of the suspension - volumetric concentration of solids - k n coefficient which characterizes a specific effect of particle interactions - m maximum packing concentration - r,0 relative viscosity at low shear-rates - [] intrinsic viscosity - n, n parameter that reflects the level of particle interactions at low and high shear-rates, respectively - r, relative viscosity at high shear-rates - (m)s, (m)i, (m)l packing factors for small, intermediate and large diameter classes - v s, vi, vl volume fractions of small, intermediate and large diameter classes, respectively - si, sl coefficient to be used in relating a smaller to an intermediate and larger particle group, respectively - is, il coefficient to be used in relating an intermediate to a smaller and larger particle group, respectively - ls, li coefficient to be used in relating a larger to a smaller and intermediate particle group, respectively - m0 maximum packing concentration for binary mixtures - m,e measured maximum packing concentration - m,c calculated maximum packing concentration  相似文献   

10.
Results of an experimental study of watervapor absorption by a stagnant layer of the aqueous solution of LiBr with admixed octanol, used as a surfactant, are described. Time dependences of temperature at various heights of the layer, time dependences of absorbed mass, and temperature and concentration profiles at various times are reported. A comparison with experimental data for surfactantfree solutions reveals an enhanced action of octanol on watervapor absorption and an increase in the absorbent surface temperature at the initial stage of the process.  相似文献   

11.
A method is proposed for calculating hypersonic ideal-gas flow past blunt-edged delta wings with aspect ratios = 100–200. Systematic wing flow calculations are carried out on the intervals 6 M 20, 0 20, 60 80; the results are analyzed in terms of hypersonic similarity parameters.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 175–179, September–October, 1990.  相似文献   

12.
Summary The behavior of a spherical bubble near a solid wall is analysed by considering the liquid compressibility. The equation of motion of the bubble with first order correction for the effects of liquid compressibility and solid wall is derived. The equation obtained here coincides with the known result in case of L or C . Further experimental study is made on the motion of bubbles produced by a spark discharge in water. The theoretical results are in good agreement with the experiments.
Das Verhalten einer kugelförmigen Blase in einer kompressiblen Flüssigkeit in der Nähe einer festen Wand
Übersicht Bei Berücksichtigung der Flüssigkeitskompressibilität wird das Verhalten einer kugelförmigen Blase in der Nähe einer festen Wand analysiert. Die Gleichung der Bewegung der Blase wird mit der Korrektur erster Ordnung für den Einfluß der Flüssigkeitskompressibilität und der festen Wand angegeben. Aus der erhaltenen Gleichung wird für L oder C das bekannte Ergebnis hergeleitet. Darüber hinaus wird eine experimentelle Untersuchung der Blasenbewegung durchgeführt. Die Blase wird mit Hilfe von Funkendurchschlägen zwischen Elektroden in Wasser erzeugt. Die theoretischen Ergebnisse stimmen gut mit den Experimenten überein.
  相似文献   

13.
Summary Reiner defined a numeric, which he called theDeborah Number to represent the ratio of a relaxation time to a natural (observation) time. This implies aMaxwell model but is readily extended to complete relaxation spectra. Similar Numbers are proposed for retardation times and also for some conditions of coagulation thixotropy and for data from certain psychophysical experiments.  相似文献   

14.
The influence of ultrasoundabsorbing coatings on stability of hypersonic boundary layers is considered. Two types of coatings were used in experiments: feltmetal with a random porous microstructure and a sheet perforated by blind cylindrical microchannels. The experiments were performed in a wind tunnel at a Mach number M = 5.95 on sharp cones with a 7° apex halfangle. Evolution of natural disturbances and artificially induced wave packets in the boundary layer was studied with the help of hotwire anemometry. Spatial characteristics of artificial disturbances were obtained. It is demonstrated that such coatings exert a stabilizing effect on secondmode disturbances.  相似文献   

15.
Several theoretical [1–4] and experimental [5–7] studies have been devoted to the study of the effect of distributed injection of a gaseous substance on the characteristics of the turbulent boundary layer. The primary study has been made of flow past a flat plate with gas injection. The theoretical methods are based primarily on the semiempirical theories of Prandtl [1] and Karman [2].In contrast with the previous studies, the present paper proposes a power law for the mixing length; this makes it possible to obtain velocity profiles which degenerate to the known power profiles [8] in the case of flow without blowing and heat transfer. This approach yields analytic results for flows with moderate pressure gradient.Notation x, y coordinates - U, V velocity components - density - T temperature - h enthalpy - H total enthalpy - c mass concentration - , , D coefficients of molecular viscosity, thermal conductivity, diffusion - cp specific heat - adiabatic exponent - r distance from axis of symmetry to surface - boundary layer thickness - U velocity in stream core - friction - cf friction coefficient - P Prandtl number - S Schmidt number - St Stanton number - M Mach number - j=0 plane case - j=1 axisymmetric case The indices 1 injected gas - 2 mainstream gas - w quantities at the wall - core of boundary layer - 0 flow of incompressible gas without injection - v=0 flow of compressible gas without injection - * quantities at the edge of the laminar sublayer - quantities at the initial section - turbulent transport coefficients  相似文献   

16.
Resonant generation of a solitary wave in a thermocline   总被引:1,自引:0,他引:1  
The resonant generation of a second-mode internal solitary wave, resulting from a ship internal waves system damping in a thermocline, is studied experimentally. The source of the stationary internal waves was provided by an oblong ellipsoid of revolution towed horizontally and uniformly at the depth of the thermocline center. The ranges of the Reynolds and Froude numbers were 500Re=Ul/v 15000 and 0.3Fi=U/N max D1.0, respectively. When the body's speed and the linear long-wave second-mode phase speed were equal, an internal solitary wave of the bulge type was observed. The shape of the wave satisfied the Korteweg-de Vries equation. The Urcell parameter was equal to 10.2.List of Symbols L, B, H towing tank length, breadth and height respectively - z vertical coordinate - D characteristic vertical dimension of the body - a minor semiaxis of an ellipsoid - b major semiaxis of an ellipsoid (maximum ellipsoid diameter D=2a) - l length of the body ( =2b) - U velocity of the body - t temperature - g acceleration due to gravity - i fresh water density at ith level - fresh water density for temperature t=4°C - o water density at the center of the thermocline - i density variation due to the temperature variation at the ith horizon - N Brunt-Väisälä frequency - N max maximum value of Brunt-Väisälä frequency - Re Reynolds number - Fi internal Froude number - f n eigenfunction of the boundary-value problem for the nth mode - n nth mode frequency - k n nth mode horizontal wavenumber - C n limiting phase speed of a linear nth mode interval wave (= n/kn;kn 0) - Ur Urcell parameter - v fresh water kinematic viscosity - conventional density - half-length of a solitary wave - 0 solitary wave height - time This work was partially supported by the INTAS (grant no. 94-4057) and by the Russian Foundation of Basic Research under grant no. 94-05-17004-a.A version of this paper was presented at the Second International Conference on Experimental Fluid Mechanics, Torino, Italy, 4–8 July, 1994.  相似文献   

17.
Summary In a previous research we have shown that the KS-transformation, developed by Kustaanheimo and Stiefel for the regularization of the Kepler problem, may be interpreted as the correspondence which associates to each null 4-vector of the space of Minkowski a one-index spinor, defined up to a phase factor, and we have obtained a new form of the KS-transformation. In the present research we show that this formulation allows a straight derivation of the Hopf fibering of the sphere S3 (characterized by unit spinors) having the base space given by the section (sphere S2) of the light cone, and we show that the KS-transformation allows the quantization of the symplectic manifold S2 in the sense of Souriau. The sphere S3 turns out to be a contact quantized manifold. The bilinear relation characteristic of the KS-theory and the column vectors of the KS-matrix are intimately related to the contact structure.
Sommario In un precedente lavoro si è mostrato che la trasformazione KS, introdotta da Kustaanheimo e Stiefel per regolarizzare il problema di Keplero, è riconducibile alla ben nota corrispondenza fra vettori del cono isotropo dello spazio di Minkowski e spinori semplici, definiti a meno della fase, e si è pervenuti ad una nuova formulazione della KS. Nel presente lavoro si mostra come da tale formulazione scaturisca in modo naturale la fibrazione di Hopf della sfera S3 (caratterizzata dagli spinori unitari) avente quale base una sezione (sfera S2) del cono isotropo e si mette in luce come la trasformazione KS consenta di effettuare la quantizzazione della varietà simplettica S2 nel senso di Souriau e di ottenere la sfera S3 quale varietà quantica di contatto. La relazione bilineare caratteristica della teoria KS ed i vettori colonna della matrice KS risultano intimamente legati alla struttura di contatto.


Presented at the VI Congresso Nazionale dell'Associazione Italiana di Meccanica Teorica ed Applicata (AIMETA), Genova, October 1982. Work performed under the auspices of G.N.F.M. of the C.N.R. (Consiglio Nazionale delle Ricerche).  相似文献   

18.
The heattransfer processes in a supersonic spatial flow around a spherically blunted cone with allowance for heat overflow along the longitudinal and circumferential coordinates and injection of a coolant gas are studied numerically. The prospects of using highly heatconducting materials and injection of a coolant gas for reduction of the maximum temperatures at the body surface are demonstrated. The solutions of the direct and inverse problems in one, two, and threedimensional formulations for different shell materials are compared. The error of the thinwall method in determining the heat flux on the heatloaded boundary of the body is estimated.  相似文献   

19.
Shear softening and thixotropic properties of wheat flour doughs are demonstrated in dynamic testing with a constant stress rheometer. This behaviour appears beyond the strictly linear domain (strain amplitude 0 0.2%),G,G and |*| decreasing with 0, the strain response to a sine stress wave yet retaining a sinusoidal shape. It is also shown thatG recovers progressively in function of rest time. In this domain, as well as in the strictly linear domain, the Cox-Merz rule did not apply but() and | *())| may be superimposed by using a shift factor, its value decreasing in the former domain when 0 increases. Beyond a strain amplitude of about 10–20%, the strain response is progressively distorted and the shear softening effects become irreversible following rest.  相似文献   

20.
Heat and mass transfer at a vertical surface is examined in the case of combined free and forced convection. The boundary layer equations, transformed to ordinary differential equations, contain a parameter that determines the effect of free convection on the forced motion. Criteria are offered for differentiating the free-convection, forced-convection, and combined regimes.Notation x, y coordinates - u, v velocity components - g acceleration of gravity - T temperature - kinematic viscosity - coefficient of thermal expansion - a thermal diffusivity - 1 partial vapor density - D diffusion coefficient - W2 mass velocity of air - independent variable - w shear stress at wall - thermal conductivity - r latent heat of phase transition - , dimensionless temperature and partial vapor density - m* the complex (m 1m 1w )/(1–m(1w ) - cp specific heat at constant pressure - G Grashof number - R Reynolds number - P Prandtl number - S Schmidt number  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号