首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The trend toward the production of high purity factor VIII concentrates for clinical use is still in progress. Although all plasma derivatives must undergo viral inactivation procedures, the possibility of transmission of viral diseases is not completely eliminated. In order to reduce such risk, we have included double virus inactivation in the procedure of factor VIII concentrate production. In a scale-up procedure for isolation of factor VIII from cryoprecipitate, two methods were used. The first is based on the chromatographic purification of factor VIII after pasteurization of cryoprecipitate solution and solvent/detergent (S/D) inactivation of viruses. The second is based on multistep precipitation of factor VIII by sodium chloride and glycine. Viral inactivation was performed by combination of S/D treatment and heating of final freeze-dried product 30 min at 100°C. The typical yield of factor VIII activity in the freeze-dried product was about 20% for the first method, and 25–30% for the second. Electrophoretic analyses of both factor VIII preparations by SDS-PAGE and IEF show very low content of contaminant proteins, in accordance with observed 400–650-fold increase of their specific activity over plasma. Both factor VIII products were stable in the liquid state for more than 24 h at room temperature. The final products, after double viral inactivation, are considered to be suitable for clinical evaluations.  相似文献   

2.
Intron Powder for Injection is a lyophilized formulation of Interferon alfa-2b marketed for treatment of Hepatitis C and some cancer indications. Human Serum Albumin (HSA) is used as a lyoprotectant and cryoprotectant at 1.0 mg/mL in the product formulation. No stability-indicating method, which can quantitate HSA and its dimer or oligomer aggregates in the formulated product, has been published to date. This paper describes the development and validation of a stability-indicating high performance size exclusion chromatography (HPSEC) method for the assay of HSA and estimation of HSA related compounds in lyophilized Intron Powder for Injection. The method employs a YMC-Pack Diol-200 column (7.8 mm x 30 cm, 5 microm porous particles with 250 A pore size), UV detection at 214 nm, and a mobile phase of 0.1 M phosphate buffer at pH 7.0 with 0.1 M sodium sulfate. The mobiles phase runs in an isocratic mode at 1.0 mL/min and the total chromatographic run time is 30 min. The method was validated for specific, linearity, accuracy, sensitivity, and robustness. It was shown to be specific for HSA and HSA aggregates (dimer and oligomers) with a limit of quantitation of 0.0005 mg/mL or 0.05% of HSA label claim in the presence of active therapeutic protein, Interferon alfa-2b, and the other pharmaceutical excipients, glycine, sodium phosphate dibasic, sodium phosphate monobasic. The method is stability indicating and is suitable for assay of HSA from 0.0005 mg/mL to 1.5mg/mL. (0.05-150% of HSA label claim) and for estimation of HSA related aggregates (dimer, and oligomer) from 0.0005 mg/mL to 0.15 mg/mL (0.05-15% of HSA label claim). The method is robust for routine use in product quality control. The method was applied to the analysis of batches of lyophilized Intron Powder for Injection of low, middle and high strength from the beginning, middle and end of shelf-life. The results indicated that HSA is stable in the product through out its shelf-life.  相似文献   

3.
A simple, sensitive and low‐cost method using CE coupled with glucose‐β‐CD interaction assisted ACN stacking technique has been developed for quantification of trace amlodipine in dog plasma. The plasma samples were extracted with methyl tert‐butyl ether. The separation was performed at 25°C in a 31.2 cm × 75 μm fused‐silica capillary with an applied voltage of 15 kV. The BGE was composed of 6.25 mM borate/25 mM phosphate (pH 2.5) and 5 mg/mL glucose‐β‐CD. The detection wavelength was 200 nm. Because CD could diminish the interaction between drugs and matrix, and derivation groups of CD play an important role in separation performance, the effects of β‐CD, and its derivatives on the separation were studied at several concentrations (0, 2.5, 5.0, 10.0 mg/mL). In this study, organic solvent field‐amplified sample stacking technique in combination with glucose‐β‐CD enhanced the sensitivity about 60–70 folds and glucose‐β‐CD could effectively improve the peak shape. All the validation data, such as accuracy, precision extraction recovery, and stability, were within the required limits. The calibration curve was linear for amlodipine from 1 to 200 ng/mL. The method developed was successfully applied to the pharmacokinetic studies of amlodipine besylate in beagle dogs.  相似文献   

4.
A capillary electrophoresis inductively coupled plasma mass spectrometry method for separation of free cisplatin from liposome-encapsulated cisplatin and protein-bound cisplatin was developed. A liposomal formulation of cisplatin based on PEGylated liposomes was used as model drug formulation. The effect of human plasma matrix on the analysis of liposome-encapsulated cisplatin and intact cisplatin was studied. The presence of 1 % of dextran and 4 mM of sodium dodecyl sulfate in HEPES buffer was demonstrated to be effective in improving the separation of liposomes and cisplatin bound to proteins in plasma. A detection limit of 41 ng/mL of platinum and a precision of 2.1 % (for 10 μg/mL of cisplatin standard) were obtained. Simultaneous measurements of phosphorous and platinum allows the simultaneous monitoring of the liposomes, liposome-encapsulated cisplatin, free cisplatin and cisplatin bound to plasma constituents in plasma samples. It was demonstrated that this approach is suitable for studies of the stability of liposome formulations as leakage of active drug from the liposomes and subsequent binding to biomolecules in plasma can be monitored. This methodology has not been reported before and will improve characterization of liposomal drugs during drug development and in studies on kinetics.
Figure
A method for distinguishing free cisplatin from liposome-encapsulated and protein-bound platinum in human plasma allows for studies of stability and kinetics of new drug formulations during drug development  相似文献   

5.
The influence of protein concentration and order of addition relative to homogenization (before or after) on the extent of droplet flocculation in heat-treated oil-in-water emulsions stabilized by a globular protein were examined using laser diffraction. n-Hexadecane (10 wt%) oil-in-water emulsions (pH 7, 150 mM NaCl) stabilized by beta-lactoglobulin (beta-Lg) were prepared by three methods: (1) 4 mg/mL beta-Lg added before homogenization; (2) 4 mg/mL beta-Lg added before homogenization and 6 mg/mL beta-Lg added after homogenization; (3) 10 mg/mL beta-Lg added before homogenization. The emulsions were then subjected to various isothermal heat treatments (30-95 degrees C for 20 min), with the 150 mM NaCl being added either before or after heating. Emulsion 1 contained little nonadsorbed protein and exhibited extensive droplet aggregation at all temperatures, which was attributed to the fact that the droplets had a high surface hydrophobicity, e.g., due to exposed oil or extensive protein surface denaturation. Emulsions 2 and 3 contained a significant fraction of nonadsorbed beta-Lg. When the NaCl was added before heating, these emulsions were relatively stable to droplet flocculation below a critical holding temperature (75 and 60 degrees C, respectively) but showed extensive flocculation above this temperature. The stability at low temperatures was attributed to the droplets having a relatively low surface hydrophobicity, e.g., due to complete saturation of the droplet surface with protein or due to more limited surface denaturation. The instability at high temperatures was attributed to thermal denaturation of the adsorbed and nonadsorbed proteins leading to increased hydrophobic interactions between droplets. When the salt was added to Emulsions 2 and 3 after heating, little droplet flocculation was observed at high temperatures, which was attributed to the dominance of intra-membrane over inter-membrane protein-protein interactions. Our data suggests that protein concentration and order of addition have a strong influence on the flocculation stability of protein-stabilized emulsions, which has important implications for the formulation and production of many emulsion-based products.  相似文献   

6.
The extractability of 58 different basic drugs by 3-phase liquid-phase microextraction (LPME) was studied. Extraction recoveries were correlated to solubility data and log D data calculated with a commercial computer program. The basic drugs were extracted from 1.5 mL water samples (pH 13) through approximately 15 microL of dodecyl acetate immobilized within the pores of a porous polypropylene hollow fibre (organic phase), and into 15 microL of 10 mM HCl (acceptor solution) present inside the lumen of the hollow fibre. Compounds with a calculated solubility below 1 mg/mL at pH 2 were poorly recovered and remained principally in the organic phase. For these drugs, 2-phase LPME may be used as an alternative technique, where the aqueous acceptor phase is replaced by an organic solvent. In the solubility range 1-5 mg/mL, most drugs were effectively extracted (recovery >30%), whereas drugs belonging to the solubility range 5-150 mg/mL were all extracted with recoveries above 30% by 3-phase LPME. The hydrophilic nature of most drugs with solubilities above 150 mg/mL prevented them from entering the organic phase, and only those with log D >1.8 were effectively recovered by 3-phase LPME. For drugs with log D < 1.8 (and solubility >150 mg/mL), carrier-mediated LPME was found to be the preferred technique, where an ion-pair reagent (octanoic acid) was added to the sample. In the case of carrier-mediated LPME, the volume of sample was decreased to 100 microL to facilitate rapid extractions. Based on the present work, the extractability of new compounds may easily be predicted to speed up method development. Extractions were also accomplished from plasma samples, where interactions between proteins and the drugs may reduce the extraction recovery. However, dilution of the plasma samples with water and adjustment of pH into the alkaline region effectively suppressed drug-protein interactions for most of the drugs studied.  相似文献   

7.
A Kunkel  H W?tzig 《Electrophoresis》1999,20(12):2379-2389
A number of pharmaceuticals (e.g., acetaminophen, salicylic acid, sulfamethoxazole, theophylline, tolbutamide and trimethoprim) have been determined in human plasma by micellar electrokinetic chromatography (MEKC), without sample pretreatment, using underivatized fused-silica capillaries. The total analysis time was only 10 min. A sodium dodecyl sulfate (SDS)-containing borate buffer (60 mM with 200 mM SDS) at pH 10 was used. Between runs, proteins adsorbed to the capillary wall are removed by rinsing with SDS buffer and either acetonitrile (e.g., 50% v/v) or isopropanol (e.g., 10% v/v). Other rinsing procedures are discussed (salts, enzyme-containing solutions, organic solvents, sodium hydroxide, hydrofluoric acid). The separation system is tested in a concentration range between 10 ng/mL and 100 microg/mL; a detection limit of about 20 ng/mL can readily be obtained. The sensitivity was substantially improved using isopropanol as buffer additive. A day-to-day precision for relative peak areas of 1-2% relative standard deviation (RSD, n > 40) was reached in the upper concentration range. Under repeatability conditions, these values could also be obtained for low microg/mL concentrations. Thus, not only drug monitoring but also pharmacokinetic investigations from blood plasma become possible without further sample pretreatment.  相似文献   

8.
A crude preparation of Aspergillus niger β-glucosidase (27.5 cello-biase U/mg protein at 40°C, pH 5.0) was immobilized on concanavalin A-Sepharose (CAS). The cellobiase activity of the immobilized enzyme was 1334 U/mg dried CAS or 108 U/mL CAS gel. The β-glucosidase-CAS complex was entrapped within crosslinked propylene glycol alginate/bone-geletin gel spheres that possessed between 0.67 and 2.35 cellobiase U/mL spheres, depending on their size. The effect of cellobiose concentration (10–300 mM) on the activity of native, immobilized, and gel-entrapped enzyme was determined. It was shown that concentrations of cellobiose between 10 and 180 mM were not inhibitory to the entrapped enzyme, although inhibition was found to occur with the native and immobilized enzyme. Exogenous ion addition was not necessary to maintain the structural integrity of the spheres, which were stable for 4 d at 40°C.  相似文献   

9.
A liquid chromatography–tandem mass spectrometric method for the quantification of granisetron and its major metabolite, 7‐hydroxy granisetron in human plasma and urine samples was developed and validated. Respective stable isotopically labeled granisetron and 7‐hydroxy granisetron were used as internal standards (IS). Chromatography was performed using an Xselect HSS T3 analytical column with a mobile phase of 20% acetonitrile in water (containing 0.2 mM ammonium formate and 0.14% formic acid, pH 4) delivered in an isocratic mode. Tandem mass spectrometry operating in positive electrospray ionization mode with multiple reaction monitoring was used for quantification. The standard curves were linear in the concentration ranges of 0.5–100 ng/mL for granisetron and 0.1–100 ng/mL for 7‐hydroxy granisetron in human plasma samples, and 2–2000 ng/mL for granisetron and 2–1000 ng/mL for 7‐hydroxy granisetron in human urine samples, respectively. The accuracies were >85% and the precision as determined by the coefficient of variations was <10%. No significant matrix effects were observed for granisetron or 7‐hydroxy granisetron in either plasma or urine samples. Granisetron was stable under various storage and experimental conditions. This validated method was successfully applied to a pharmacokinetic study after intravenous administration of 1 mg granisetron to a pregnant subject. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The influence of protein concentration and order of addition relative to homogenization (before or after) on the extent of droplet flocculation in oil-in-water emulsions stabilized by a globular protein was examined using laser diffraction. n-Hexadecane (10 wt%) oil-in-water emulsions (pH 7, 150 mM NaCl) stabilized by beta-lactoglobulin (beta-Lg) were prepared by three methods: (1) 4 mg/mL beta-Lg added before homogenization; (2)10 mg/mL beta-Lg added before homogenization; (3) 4 mg/mL beta-Lg added before homogenization and 6 mg/mL beta-Lg added after homogenization. Emulsion 1 contained little nonadsorbed protein (<3%) and underwent extremely rapid and extensive droplet flocculation immediately after homogenization. Emulsion 2 contained a significant fraction of nonadsorbed beta-Lg and exhibited relatively slow droplet flocculation for some hours after homogenization. Measurements on Emulsion 3 showed that the extremely rapid particle growth observed in Emulsion 1 could be arrested by adding native beta-Lg immediately after homogenization. The extent of particle growth in the three types of emulsions was highly dependent on the time that the salt was added to the emulsions, i.e., after 0 or 24 h aging. We postulate that the observed differences are due to changes in droplet surface hydrophobicity caused by differences in the packing or conformation of adsorbed proteins. Our data suggest that history effects have a strong influence on the flocculation stability of protein-stabilized emulsions, which has important implications for the formulation and production of protein stabilized oil-in-water emulsions.  相似文献   

11.
The effects of selected lyoprotecting excipients and chemical additives on the specific activity and the thermal stability of the hydroperoxide lyase (HPL) enzymatic extract from mint leaves were investigated. The addition of KCl (5%, w/w) and dextran (2.5%, w/w) to the enzymatic extract, prior to lyophilization, increased the HPL specific activity by 2.0- and 1.2-fold, respectively, compared to the control lyophilized extract. From half-life time (t 1/2), it can be seen that KCl has enhanced the HPL stability by 1.3- to 2.3-fold, during long-period storage at ?20 °C and 4 °C. Among the selected additives used throughout this study, glycine appeared to be the most effective one. In addition to the activation effect conferred by glycine, it also enhanced the HPL thermal stability. In contrast, polyhydroxyl-containing additives were not effective for stabilizing the HPL enzymatic extract. On the other hand, there was no signification increase in HPL activity and its thermal stability with the presence of Triton X-100. The results also showed that in the presence of glycine (10%), the catalytic efficiency of HPL was increased by 2.45-fold than that without additive.  相似文献   

12.
A rapid and sensitive method for the quantitative detection of busulfan (BU) in children's hemolytic samples by HPLC–tandem mass spectrometry (MS/MS) was established. In this study, the sample preparation procedure involved a one-step protein precipitation with acetonitrile (ACN) solution, and the HPLC–MS/MS method used Hypersil GOLD C18. The mobile phase consisted of 10 mM ammonium acetate solution (containing 0.1% formic acid) and ACN with a flow rate of 0.4 mL/min. Multiple reaction monitoring modes were used for quantitative analysis and the ion pairs of BU and BU-d8 were m/z 263.9 → 150.9 and 272.0 → 159.0, respectively. BU had a good linearity in the range of 0.01–10 μg mL−1. The intra- and inter-day relative error was between –7.21% and 8.26%, and the coefficient of variation was less than 12.64%. The average extraction recovery rate in plasma samples was 99.76% ± 6.53%, and the matrix in normal plasma and hemolyzed plasma had no significant effect on the detection results. Normal and hemolytic samples could maintain good stability at 4, 25 and –40°C. As a result, this method is particularly suitable for determining BU in hemolytic samples from children with hematopoietic stem cell transplantation (HSCT), and this study provides the methodological basis for further research on the pharmacokinetics of BU in children with HSCT.  相似文献   

13.
A new formulation of a freeze-dried kit for the labeling of tetrofosmin with technetium-99m has been developed. The kit contains lyophilized mixture of 0.320 mg tetrofosmin [6,9-bis(2-ethoxyethyl)-3,12-dioxa-6,9-diphosphatetradecane], 0.025 mg stannous chloride dihydrate, 5 mg sodium tartrate and 5 mg sodium hydrogen carbonate. The product contains no antimicrobial preservative. When 99mTc pertechnetate up to 6 mL saline containing 200 mCi is added to lyophilized mixture, a lipophilic, cationic 99mTc complex is formed, 99mTc-tetrofosmin. The performance of newly developed kit is compared with commercially available MYOVIEW kit for heart imaging. The patient studies show that the images of heart obtained by 99mTc-tetrofosmin prepared by new formulation are equally good to MYOVIEW.  相似文献   

14.
The DNA methyltransferase inhibitor 5‐azacytidine is being evaluated clinically as an oral formulation to treat various solid tumors. A sensitive, reliable method was developed to quantitate 5‐azacytidine using LC‐MS/MS to perform detailed pharmacokinetic studies. The drug of interest was extracted from plasma using Oasis MCX ion exchange solid‐phase extraction 96‐well plates. Chromatographic separation was achieved with a YMC J'sphere M80 C18 column and isocratic elution with a methanol–water–formic acid (15:85:0.1, v/v/v) mobile phase over a 7 min total analytical run time. An AB Sciex 5500 triple quadrupole mass spectrometer operated in positive electrospray ionization mode was used for the detection of 5‐azacytidine. The assay range was 5–500 ng/mL and proved to be accurate (97.8–109.1%) and precise (CV ≤ 9.8%). Tetrahydrouridine was used to stabilize 5‐azacytidine in blood/plasma samples. With the addition of tetrahydrouridine, long‐term frozen plasma stability for 5‐azacytidine at ?70°C has been determined for at least 323 days. The method was applied for the measurement of total plasma concentrations of 5‐azacytidine in a cancer patient receiving a 300 mg oral daily dose. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Recombinant coagulation factor VIII (FVIII) expressed in mammalian expression systems is used extensively in the treatment of hemophilia A. It is reported that the heavy (A1–A2) and light chains (A3–C1–C2) of factor VIII purified from plasma regained the coagulation activity by dimerization in vitro. In this work, cDNA coding for the light chain of human coagulation factor VIII (FVIII-LC) was cloned into pPICZα-A expression vector downstream of alcohol oxidase promoter and α-mating signal sequence from Saccharomyces cerevisiae in order to express the protein with a native N-terminus. The methylotrophic yeast, Pichia pastoris X-33, was transformed with this cassette, and transformants were selected for production of human factor VIII light chain into culture media. SDS-PAGE and Western blot analysis confirmed the expression of factor VIII light chain protein. The expressed protein was purified to near homogeneity using histidine ligand affinity chromatography (2.342 mg/L). The biological activity of FVIII-LC was confirmed by analyzing the interaction between FVIII-LC and phospholipid vesicles. The data presented here indicate the possibilities of exploring cost-effective systems to express complex proteins of therapeutic value.  相似文献   

16.
Abstract

Factor Analysis (FA) is applied to tentatively establish either jhe sources of pollution in the groundwater in a delimited zone in Catalonia which has been polluted by permeation with non-controlled wastewaters or the groundwater evolution with time in this area. Three types of chemical analysis were considered: general parameters indicating the chemical quality of water, inorganic micropollutants and organic micropollutants. These analyses were carried out with forty-five samples collected in three different periods, and eleven parameters were considered. From the final solutions of the FA method applied several factors were retained for the different sampling periods and these factors were related to different sources of pollution. FA has proved to be more useful when punctual pollution incidents takes place rather than when groundwater evolution with time is studied.  相似文献   

17.
A high performance liquid chromatographic-mass spectrometric (LC/MS) assay was developed and validated for the determination of BMS-204352 in dog K(3)EDTA plasma. A 0.5 mL aliquot of control plasma was spiked with BMS-204352 and internal standard (IS) and buffered with 1 mL of 5 mM ammonium acetate. The mixture was then extracted with 3 mL of toluene. After separation and evaporation of the organic phase to dryness using nitrogen at 40 degrees C, the residue was reconstituted in the mobile phase and 25 microL of the sample were injected onto a Hypersil C(18) column (2 x 50 mm; 3 microm) at a flow rate of 0.5 mL/min. The mobile phase was consisted of two solvent mixtures (A and B). Solvent A was composed of 5 mM ammonium acetate and 0.1% triethylamine in 75:25 v/v water:methanol, pH adjusted to 5.5 with glacial acetic acid, and solvent B was 5 mM ammonium acetate in methanol. A linear gradient system was used to elute the analytes. The mass spectrometer was programmed to admit the de-protonated molecules at m/z 352.7 (IS) and m/z 357.9 (BMS-204352). Standard curves of BMS-204352 were linear (r(2) > or = 0.998) over the concentration range of 0.5-1000 ng/mL. The mean predicted quality control (QC) concentrations deviated less than 5.1% from the corresponding nominal values (ie 4, 80, 400 and 2000 ng/mL); the within- and between-assay precision of the assay were within 5.5% relative standard deviation. Stability of BMS-204352 was confirmed after at least three freeze/thaw cycles and BMS-204532 was stable in dog plasma when stored frozen at or below -20 degrees C for at least 16 weeks in spiked QC samples and for at least 4 1/2 weeks for in vivo study samples. BMS-204352 and IS were stable in the injection solvent at room temperature for at least 24 h. The assay was applied to delineate the pharmacokinetic disposition of BMS-204352 in dogs following a single intravenous dose administration. In conclusion, the assay is accurate, precise, specific, sensitive and reproducible for the pharmacokinetic analysis of BMS-204532 in dog plasma.  相似文献   

18.
A stability‐indicating MEKC method was developed and validated for the simultaneous determination of aliskiren (ALI) and hydrochlorothiazide (HCTZ) in pharmaceutical formulations using ranitidine as an internal standard (IS). Optimal conditions for the separation of ALI, HCTZ and its major impurity chlorothiazide (CTZ), IS and degradation products were investigated. The method employed 47 mM Tris buffer and 47 mM anionic detergent SDS solution at pH 10.2 as the background electrolyte. MEKC method was performed on a fused‐silica capillary (40 cm) at 28°C. Applied voltage was 26 kV (positive polarity) and photodiode array (PDA) detector was set at 217 nm. The method was validated in accordance with the ICH requirements. The method was linear over the concentration range of 5–100 and 60–1200 μg/mL for HCTZ and ALI, respectively (r2>0.9997). The stability‐indicating capability of the method was established by enforced degradation studies combined with peak purity assessment using the PDA detection. Precision and accuracy evaluated by RSD were lower than 2%. The method proved to be robust by a fractional factorial design evaluation. The proposed MEKC method was successfully applied for the quantitative analysis of ALI and HCTZ both individually and in a combined dosage tablet formulation to support the quality control.  相似文献   

19.
A fast and accurate liquid chromatography/tandem mass spectrometric (LC‐MS/MS) assay was first developed and validated for the determination of deferiprone in human plasma. The analytes were extracted with acetonitrile from only 50 μL aliquots of human plasma to achieve the protein precipitation. After extraction, chromatographic separation of analytes in human plasma was performed using a Synergi Fusion‐RP 80A column at 30 °C. The mobile phase consisted of methanol and 0.2% formic acid containing 0.2 mM EDTA (60:40, v/v). The flow rate of the mobile phase was 0.8 mL/min. The total run time for each sample analysis was 4 min. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring mode by monitoring the precursor‐to‐parent ion transitions m/z 140.1 → 53.1 for deferiprone and m/z 143.1 → 98.1 for internal standard. A linear range was established from 0.1 to 20 µg/mL. The limit of detection was determined as 0.05 µg/mL. The validated method was estimated for linearity, recovery, stability, precision and accuracy. Intraday and interday precisions were 4.3–5.5 and 4.6–7.3%, respectively. The recovery of deferiprone was in the range of 80.1–86.8%. The method was successfully applied to a pharmacokinetic study of deferiprone in six thalassemia patients. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The effect of excipients on the secondary structure of lyophilized proteins was studied through second-derivative Fourier transform infrared (FTIR) spectroscopic analysis. The glass transition temperature (T g), denaturation temperature (T d) and moisture content were determined by differential scanning calorimetry (DSC) and thermogravimetry (TG). T g, T d and the preservation of protein secondary structure were found to be dependent upon the type and amount of the excipient included in the formulation. Meanwhile, the lyophilized proteins easily adsorbed amounts of moisture during storage to reduce their T gs and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号