首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang T  Ma J  Wu S  Yuan H  Zhang L  Liang Z  Zhang Y 《Electrophoresis》2011,32(20):2848-2856
An integrated platform with the combination of protein and peptide separation was established via online protein digestion, by which proteins were first separated by CIEF, online digested by a trypsin immobilized enzyme microreactor, trapped and desalted by two parallel trap columns, separated by nanoreversed-phase and finally identified by MS. In such a platform, two hollow fiber membrane interfaces were used. One was applied to supply catholyte and electric contact, and another to supply adjustment buffer to improve the compatibility of protein separation and tryptic digestion. A poly(octadecyl acrylate-co-ethylene dimethacrylate) monolithic column served as the trap column to capture sample and to remove the ampholytes from CIEF. A hybrid silica monolith-based immobilized trypsin microreactor was used for online protein digestion. To evaluate the performance of such a platform, a 4-protein mixture with a loading amount of only 0.29?μg, was analyzed, and sequence coverages for BSA, myoglobin, β-lactoglobulin and ribonuclease A were 8, 26, 10 and 54%, respectively. Furthermore, such an integrated platform was successfully applied for the analysis of proteins extracted from Escherichia coli, and 101 proteins were positively identified. We anticipate that the integrated platform developed herein will provide a promising tool for low-abundance protein identification with the combination of top-down and bottom-up approaches.  相似文献   

2.
Sheng L  Pawliszyn J 《The Analyst》2002,127(9):1159-1163
Concentrating properties of the Capillary Isoelectric Focusing (CIEF) system with continuous whole-column-imaging detection were investigated for application as a second dimension in a comprehensive two-dimensional (2D) separation process. The concentration/separation/detection was completed within 4 min in a 300 microm inner diameter capillary. As the key to the successful coupling of CIEF to a first dimension separation, a novel interface was developed. A 10-port valve with two conditioning loops was used to perform both comprehensive collection and dialysis desalting of the first dimensional effluent, and as an interface coupling Micellar Electrokinetic Chromatography (MEKC) to CIEF. In the loop, salt and other unwanted first dimension effluent components were eliminated by dialysis and carrier ampholytes (CAs) were added. Peak broadening during the dialysis did not have significant impact on the CIEF separation because of its concentrating effect. Protein digests were first separated by MEKC followed by isoelectric point (pI) using whole-column-imaged CIEF. The dialysis interface allows general coupling of the whole-column-imaged CIEF to microscale separations.  相似文献   

3.
Separation of a protein mixture by size-exclusion chromatography (SEC) was combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). Identification of proteins in the collected fractions was performed both as intact proteins by MALDI-TOFMS and using peptide mass fingerprinting (PMF) after their digestion with trypsin. The presence of salts mostly disturbs the MALDI-TOFMS signal and, therefore, proper purification or desalting procedures must be employed. Four desalting procedures (desalting column packed with Sephadex G-100, on-target washing, centrifugal filter devices and ZipTip C(18)) for purification of fractions of proteins separated by SEC and their tryptic digests prior to determination of their exact molecular masses by MALDI-TOFMS were compared. In the case of intact proteins, the experiments showed that the best desalting procedures are the use of ZipTip C(18) pipette tips and Ultrafree CL centrifugal filter devices. The peptide digests can be purified by using ZipTip C(18) pipette tips or on-target washing when both of these procedures provide similar results. On-target washing can be used as a simple procedure to improve the mass spectra of salt-containing samples. Analyses of the droplets collected after the on-target washing show losses of sample and matrix caused by dissolution of these compounds during this procedure. Further, it was found that protein identification based on PMF is more sensitive than analyses of intact proteins and that multiple on-target washing is very advantageous for analyses of peptide mixtures with a high content of salts.  相似文献   

4.
Protein ions, after mass spectrometric separation, can be soft-landed into liquid surfaces with preservation of their native structures. Retention of biological activity is strongly favored in glycerol-based surfaces but not in self-assembled monolayer solid surfaces. Soft-landing efficiency for multiply-charged hexokinase ions was found to be some four times higher for a glycerol/fructose liquid surface than for a fluorinated self-assembled monolayer surface. Soft-landing into liquid surfaces is also shown to allow (1) protein purification, (2) on-surface identification of the soft-landed material using MALDI, and (3) protein identification by in-surface tryptic digestion. Pure lysozyme was successfully isolated from different mixtures including an oxidized, partially decomposed batch of the protein and a partial tryptic digest. Liquid glycerol/carbohydrate mixtures could be used directly to record MALDI spectra on the soft-landed compounds provided they were fortified in advance with traditional MALDI matrices such as p-nitroaniline and alpha-cyano-4-hydroxycinnamic acid. Various proteins were soft-landed and detected on-target using these types of liquid surface. Soft-landing of multiply-charged lysozyme ions onto fluorinated self-assembled monolayer surfaces was found to occur with a limited amount of neutralization, and trapped multiply-charged ions could be desorbed from the surface by laser desorption. Initial data is shown for a new approach to protein identification that combines top-down and bottom-up approaches by utilizing protein ion soft-landing from a protein mixture, followed by tryptic digestion of the landed material and detection of characteristic tryptic fragments by MALDI.  相似文献   

5.
Mao Y  Zhang X 《Electrophoresis》2003,24(18):3289-3295
A comprehensive two-dimensional (2-D) separation system, coupling capillary reverse-phase liquid chromatography (cRPLC) to capillary isoelectric focusing (CIEF), is described for protein and peptide mapping. cRPLC, the first dimension, provided high-resolution separations for salt-free proteins. CIEF, the second dimension with an orthogonal mechanism to cRPLC afforded excellent resolution capability for proteins with efficient protein enrichment. Since all sample fractions in cRPLC effluents could be transferred to the CIEF dimensions, the combination of the two high-efficiency separations resulted in maximal separation capabilities of each dimension. Separation effectiveness of this approach was demonstrated using complex protein/peptide samples, such as yeast cytosol and a BSA tryptic digest. A peak capacity of more than 10 000 had been achieved. A laser-induced fluorescence (LIF) detector, developed for this system, allowed for high-sensitive detection, with a fmol level of peptide detection for the BSA digest. FITC and BODIPY maleimide were used to tag the proteins, and the latter was found better both for separation and detection in our 2-D system.  相似文献   

6.
Gao M  Yu W  Zhang Y  Yan G  Deng C  Yang P  Zhang X 《The Analyst》2008,133(9):1261-1267
We present a comprehensive method for proteome analysis that integrates both intact protein separation and proteolytic fragment characterization mass spectrometric approaches. Strong cation exchange chromatography (SCX) was used as the first separation dimension and capillary reversed-phase liquid chromatography (cRPLC) was integrated as the second separation dimension. Fractions from SCX were collected offline and loaded onto cRPLC. Effluents from cRPLC were directly deposited onto the MALDI target plates and further digested by using a rapid on-probe tryptic digestion technique. This approach minimizes the amount of time and extensive labor required for traditional in-solution digestion followed by exhaustive sample cleanup and transfer. MALDI-TOF/TOF was used for subsequent analyses. The sensitivity of on-target digestion is showed by analyzing 0.07 ng of myoglobin, 0.07 ng of cytochrome c and 0.7 ng BSA. The high efficiency of the overall system was demonstrated by the analysis of intact proteins extracted from normal human liver tissue. In total, 458 proteins were identified, which proved the system's promising potential for analysis and application in proteomics.  相似文献   

7.
We report on capillary isoelectric focusing-mass spectrometry (CIEF-MS) of complex peptide mixtures in the absence of carrier ampholytes. Furthermore, the use of low concentrations of carrier ampholytes as mere spacers is investigated. Carrier ampholytes are complex mixtures of amphoteric compounds with high buffering capacity. Since all peptides are amphoteric compounds by themselves, the use of carrier ampholytes may be superfluous to establish a stable pH gradient in CIEF analysis of protein digests. Our research showed that when carrier ampholytes are omitted, the analyte ions are not focused at their isoelectric point. The analytes are charged, leading to electrophoretic mobility uncharacteristic for CIEF. The method was tested for a five-protein-mixture at 0.02 mg/mL per protein and 0.05 mg/mL per protein. At the lower concentration, the analytes were stacked during the focusing process in only a limited length of the capillary. Therefore, the higher concentration led to better separation efficiency. It was found that at low concentration (0.20%) the carrier ampholytes could work as spacers. Though it led to sensitivity losses of 15-45%, this was compensated by the higher separation efficiencies seen. The method was evaluated with an eight-protein-mixture, of which all could be identified after performing MS/MS.  相似文献   

8.
CIEF is a powerful separation tool utilized in the characterization and relative quantitation of therapeutic mAb charged isoforms. However, one CIEF method is not capable of separating all mAbs with high resolution and reproducibility. Optimization of sample composition and separation parameters is expected when developing a CIEF method for a specific mAb. This paper summarizes a root cause investigation into why a validated CIEF separation method for MAK33 (a type of IgG1) was no longer reproducible. In addition, this paper introduces the concept of sample focusing volume, which is defined as the actual capillary volume occupied by the sample after focusing and explains why there is less protein precipitation and aggregation when using narrow-range ampholytes than broad-range ampholytes. The use of DMSO as protein solubilizer and possible replacement of urea is also explored in this work. Finally, this paper demonstrates that a new optimized CIEF method can achieve over 100 reproducible high-resolution separations of MAK33 per neutral-coated capillary.  相似文献   

9.
An integrated platform consisting of protein separation by CIEF with monolithic immobilized pH gradient (M‐IPG), on‐line digestion by trypsin‐based immobilized enzyme microreactor (trypsin‐IMER), and peptide separation by CZE was established. In such a platform, a tee unit was used not only to connect M‐IPG CIEF column and trypsin‐IMER, but also to supply adjustment buffer to improve the compatibility of protein separation and digestion. Another interface was made by a Teflon tube with a nick to couple IMER and CZE via a short capillary, which was immerged in a centrifuge tube filled with 20 mmol/L glutamic acid, to exchange protein digests buffer and keep electric contact for peptide separation. By such a platform, under the optimal conditions, a mixture of ribonuclease A, myoglobin and BSA was separated into 12 fractions by M‐IPG CIEF, followed by on‐line digestion by trypsin‐IMER and peptide separation by CZE. Many peaks of tryptic peptides, corresponding to different proteins, were observed with high UV signals, indicating the excellent performance of such an integrated system. We hope that the CE‐based on‐line platform developed herein would provide another powerful alternative for an integrated analysis of proteins.  相似文献   

10.
When electrospray ionisation mass spectrometry (ESI-MS) is used on-line with capillary isoelectric focusing (CIEF), the presence of the carrier ampholytes creating the IEF pH gradient is not desirable. With the purpose of removing these ampholytes, we have developed a free-flow electrophoresis (FFE) device and coupled it to CIEF. The different parameters inherent to the resulting CIEF/FFE system were optimised using ultraviolet absorbance (UV) detection. The on-line coupling of this system with ESI-MS was successfully realised for three model proteins (myoglobin, carbonic anhydrase I and beta-lactoglobulin B).  相似文献   

11.
Integrated fluidic systems that unite bottom-up and top-down proteomic approaches have the potential to deliver complete protein characterization. To circumvent fraction collection, as is conducted in current blended approaches, a technique to regulate digestion efficiency in a flow-through system is required. The present study examined the concept of regulating tryptic digestion in an immobilized enzyme reactor (IMER), incorporating mixed solvent systems for digestion acceleration. Using ovalbumin, cytochrome c, and myoglobin as protein standards, we demonstrate that tryptic digestion can be efficiently regulated between complete digestion and no digestion extremes by oscillating between 45 and 0% acetonitrile in the fluid stream. Solvent composition was tuned using programmable solvent waveforms in a closed system consisting of the IMER, a sample delivery stream, a dual gradient pumping system and a mass spectrometer. Operation in this rheostatic digestion mode provides access to novel peptide mass maps (due to substrate unfolding hysteresis) as well as the intact protein, in a reproducible and stable fashion. Although cycle times were on the order of 90 s for testing purposes, we show that regulated digestion is sufficiently rapid to be limited by solvent switching efficiency and kinetics of substrate unfolding/folding. Thus, regulated digestion should be useful in blending bottom-up and top-down proteomics in a single closed fluidic system.  相似文献   

12.
In this study, narrow pH cuts of carrier ampholytes have been used as buffers in CE for the analysis of protein tryptic digests. Their low conductivity allows very efficient separations under high electric field strength without inducing any significant Joule heating. In this study, the capabilities of narrow pH cuts of carrier ampholytes for the separation of protein tryptic digests have been assessed. Three proteins of different molecular masses have been studied: cytochrome C (horse heart), beta-lactoglobulin B (bovine) and human transferrin. Efficient, rapid and repeatable separations of the peptides resulting from the tryptic digestion have been achieved in this buffer. Moreover, the feasibility of the coupling of carrier ampholyte-based capillary electrophoresis with ESI-MS has been demonstrated through the study of the cytochrome C tryptic digest.  相似文献   

13.
Zhang Z  Wang J  Hui L  Li L 《Electrophoresis》2012,33(4):661-665
Herein, we report an immobilized pH gradient (IPG) capillary isoelectric focusing-matrix-assisted laser desorption/ionization mass spectrometry (CIEF-MALDI MS) platform designed for the separation of complex neuropeptides. This platform features a poly(glycidyl methacrylate-divinylbenzene) (GMA-DVB)-based monolithic column for CIEF separation. Different from regular CIEF, carrier ampholytes are preimmobilized on the monolithic surface instead of being added to the sample. An off-line coupling of IPG-CIEF to MALDI MS has been established. Comparison with regular CIEF and optimizations are performed with bovine serum albumin tryptic peptides and extracted neuropeptide mixtures from crustacean Callinectes sapidus. It has been demonstrated that the separation of complex peptide mixtures in neutral and basic pH ranges can be achieved in less than 10 min with comparable separation efficiency with regular CIEF, while the MS signal is significantly enhanced when employing IPG-CIEF. Enhanced neuropeptide detection is also observed after coupling IPG-CIEF with MALDI MS.  相似文献   

14.
Proteins with molecular mass (M(r)) <20 kDa are often poorly separated in 2-D sodium dodecyl sulfate polyacrylamide gel electrophoresis. In addition, low-M(r) proteins may not be readily identified using peptide mass fingerprinting (PMF) owing to the small number of peptides generated in tryptic digestion. In this work, we used a 2-D liquid separation method based on chromatofocusing and non-porous silica reversed-phase high-performance liquid chromatography to purify proteins for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) analysis and protein identification. Several proteins were identified using the PMF method where the result was supported using an accurate M(r) value obtained from electrospray ionization TOFMS. However, many proteins were not identified owing to an insufficient number of peptides observed in the MALDI-TOF experiments. The small number of peptides detected in MALDI-TOFMS can result from internal fragmentation, the few arginines in its sequence and incomplete tryptic digestion. MALDI-QTOFMS/MS can be used to identify many of these proteins. The accurate experimental M(r) and pI confirm identification and aid in identifying post-translational modifications such as truncations and acetylations. In some cases, high-quality MS/MS data obtained from the MALDI-QTOF spectrometer overcome preferential cleavages and result in protein identification.  相似文献   

15.
We prepared a series of low-molecular-mass fluorescent ampholytes with narrow pI range. These fluorescein-based ampholytes are detection compatible with argon laser-induced fluorescence (LIF) detection. The selected properties, important for their routine use as fluorescent pI markers, were examined. The pI values of new fluorescein-based pI markers were determined by capillary isoelectric focusing (CIEF) using currently available low-molecular-mass pI markers for CIEF with photometric detection. The examples of CIEF with fluorometric detection of new compounds together with fluorescein isothiocyanate (FITC) derivatized proteins are presented.  相似文献   

16.
Simpson DC  Smith RD 《Electrophoresis》2005,26(7-8):1291-1305
Mass spectrometry (MS)-based proteomics is currently dominated by the analysis of peptides originating either from digestion of proteins separated by two-dimensional gel electrophoresis (2-DE) or from global digestion; the simple peptide mixtures obtained from digestion of gel-separated proteins do not usually require further separation, while the complex peptide mixtures obtained by global digestion are most frequently separated by chromatographic techniques. Capillary electrophoresis (CE) provides alternatives to 2-DE for protein separation and alternatives to chromatography for peptide separation. This review attempts to elucidate how the most promising CE modes, capillary zone electrophoresis (CZE) and capillary isoelectric focusing (CIEF), might best be applied to MS-based proteomics. CE-MS interfacing, mass analyzer performance, column coating to minimize analyte adsorption, and sample stacking for CZE are considered prior to examining numerous applications. Finally, multidimensional systems that incorporate CE techniques are examined; CZE often finds use as a fast, final dimension before ionization for MS, while CIEF, being an equilibrium technique, is well-suited to being the first dimension in automated fractionation systems.  相似文献   

17.
Capillary electrophoresis (CE) was coupled off-line with matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) for the analysis of proteins and peptides. CE fractions were collected directly on a matrix-coated MALDI target, using a sheath-flow interface. Protein adsorption during CE separations was prevented by coating the capillaries with the physically adsorbed, cationic polymer PolyE-323. The CE/MALDI-MS system was used for the analysis of model proteins and peptides at physiological pH as well as analysis of proteins in tear fluid. Moreover, tryptic on-target digestion of the collected protein fractions, with subsequent MALDI-MS and MS/MS peptide analysis, was demonstrated.  相似文献   

18.
Chen J  Lee CS  Shen Y  Smith RD  Baehrecke EH 《Electrophoresis》2002,23(18):3143-3148
On-line combination of capillary isoelectric focusing (CIEF) with capillary reversed-phase liquid chromatography (CRPLC) is developed using a microinjector as the interface for performing two-dimensional (2-D) protein/peptide separations of complex protein mixtures. The focusing effect of CIEF not only contributes to a high-resolution protein/peptide separation, but also may permit the analysis of low-abundance proteins with a typical concentration factor of 50-100 times. The preparative capabilities of CIEF are much larger than most of capillary-based electrokinetic separation techniques since the entire capillary is initially filled with a solution containing proteins/peptides and carrier ampholytes for the creation of a pH gradient inside the capillary. The focused peptides which have a similar pI are coinjected into the second separation dimension and further resolved by their differences in hydrophobicity. The resolving power of combined CIEF-CRPLC system is demonstrated using the soluble fraction of Drosophila salivary glands taken from a period beginning before steroid-triggered programmed cell death and extending to its completion. The separation mechanisms of CIEF and CRPLC are completely orthogonal and the overall peak capacity is estimated to be around approximately 1800 over a run time of less than 8 h. Significant enhancement in the separation peak capacity can be realized by further increasing the number of CIEF fractions and/or slowing the solvent gradient in CRPLC, however, at the expense of overall analysis time. The results of our preliminary studies display significant differences in the separation profiles of peptide samples obtained from salivary glands of animals staged at the 6 and 12 h following puparium formation.  相似文献   

19.
An on-Line multidimensional system has been developed, consisting of pH gradient strong anion exchange chromatography of native proteins in the first dimension with subsequent trapping and on-column reduction/alkylation on C4 trap columns and RP separation of the alkylated proteins in the second dimension followed by on-column tryptic digestion and electrospray MS detection. The system was evaluated using model proteins and a human urine sample. Compared to the commonly used in-solution alkylation method, the developed on-column method provides an equivalent efficiency. The recovery from the C4 trap columns of the alkylated proteins relative to the native state was from 94 to 102%. On-column tryptic digestion was satisfactory for many, but not for all proteins. The whole analytical procedure was performed on-Line with packed capillary columns for a total time of 320 min for the first ion exchange fraction, with additional 60 min for each subsequent fraction.  相似文献   

20.
谷苗  许彬  刘念  刘锋  刘炳玉  王鸿丽  王杰  魏开华 《分析化学》2007,35(9):1343-1346
本研究成功地将一种有机小分子表面活性剂RapiGest SF(Waters)用于改进电泳分离的蛋白质的鉴定效率。通过基质辅助激光解析电离飞行时间质谱(MALDI-TOF-MS)的肽质量指纹谱,考察了酶切时间、加入量、加样次序、点靶方法对方法灵敏度、蛋白质鉴定率的影响。RapiGest SF浓度为0.5%~1%,在酶切之前加入可获得更多的肽段峰和更高的鉴定率。本方法考染体系的总灵敏度为332fmol,银染体系为664fmol。比较了RapiGest SF与MALDI-TOF-MS和电喷雾质谱(ESI-MS)兼容性,未观察到明显的负影响。方法操作简便,重复性较好,适合鉴定电泳分离的低丰度蛋白质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号