首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chiral separation is very important and become a significant task of analytical chemistry in many fields. Capillary electrophoresis (CE) is a technique undergoing rapid development for chiral separation at the present time. With its high efficiency, simple operation, and extremely small sample volume,CE has become a powerful tool for chiral separation. There are many chiral selectors, such as cyclodextrins (CDs), proteins, chiral surfactants, antibiotics, bile salts, using in CE chiral separation. CDs has been most wildly used in them. Cyclodextrin (CD) is a cyclic sugar made of certain glucose units in which each has 5 chiral centers and it shows the shape of cavity with a big end and a small end. The inside of CD is hydrophobic and the outside is hydrophilic. The chiral selectivity of CD comes from the formation of host-guest compound between CD and analytes. The differences of the hydrogen-bond and the other interactions between CD and two enantiomers cause enantio-selectivity.  相似文献   

2.
《Analytical letters》2012,45(16):2344-2358
Cyclodextrins (CDs) and cyclofructans (CFs) are chiral cyclic oligosaccharides. While β-CD is composed of seven glucopyranose units forming rigid cavity, hydrophobic inside, CF6 and CF7, contain six and seven fructofuranose units, respectively, creating a polar crown ether core. These basic structures can be easily derivatized to form even more potential chiral selectors that enable enantioselective separation of various chiral compounds. Chiral stationary phases (CSPs) based on CFs and CDs that were derivatized with the same derivatization group, either dimethylphenyl or R-naphthylethyl, were compared. A set of analytes with different interaction possibilities was used for characterization of retention and enantioseparation abilities of these CSPs in normal separation mode of HPLC. The results showed that both cyclic oligosaccharide structure and derivatization group influenced the retention/separation behavior of analytes. Complementary enantioseparations were obtained for some analytes.  相似文献   

3.
Cyclodextrin (CD) derivatives are the most efficient and frequently used chiral selectors (CSs) in capillary electrophoresis (CE). There are situations when the use of a single CD as CS is not enough to obtain efficient chiral discrimination of the enantiomers; in these cases, sometimes this problem can be resolved using a dual CD system. The use of dual CD systems can often dramatically enhance enantioseparation selectivity and can be applied for the separation of many analytes of pharmaceutical interest for which enantioseparation by CE with another CS systems can be problematic. Usually in a dual CD system an anionic CD is used together with a neutral one, but there are situations when the use of a cationic CD with a neutral one or the use of two neutral CDs or even two ionized CDs can be an efficient solution. In the current review we present general aspects of the use of dual CD systems in the analysis of pharmaceutical substances. Several examples of applications of the use of dual CD systems in the analysis of pharmaceuticals are selected and discussed. Theoretical aspects regarding the separation of enantiomers through simultaneous interaction with the two CSs are also explained. Finally, advantages, disadvantages, potential and new direction in this chiral analysis field are highlighted.  相似文献   

4.
A review is presented on the use of charged cyclodextrins (CDs) as chiral selectors in capillary electrophoresis (CE) for the separation of analytes in pharmaceutical analysis. An overview is given of theoretical models that have been developed for a better prediction of the enantiomeric resolution and for a better understanding of the separation mechanism. Several types of charged CDs have been used in chiral capillary electrophoretic separation (anionic, cationic, and amphoteric CDs). Especially the anionic CDs seem to be valuable due to the fact that many pharmaceutically interesting compounds can easily be protonated (e.g., amine groups). For that reason several anionic CDs are now commercially available. Cationic and amphoteric CDs are less common in chiral analysis and only a few are commercially available. Attention is paid to the most common synthesis routes and the characterization of the CDs used in chiral capillary electrophoretic separations. The degree of substitution in the synthesized CDs may vary from one manufacturer to another or even from batch to batch, which may have a detrimental effect on the reproducibility and ruggedness of the separation system. In Sections 4, 5, and 6 the applications of anionic, cationic, and amphoteric CDs for the chiral separation in CE are described. Many interesting examples are shown and the influence of important parameters on the enantioselectivity is discussed.  相似文献   

5.
Yang WC  Yu AM  Yu XD  Chen HY 《Electrophoresis》2001,22(10):2025-2031
A mathematical model concerning the separation selectivity of basic analytes in chiral capillary electrophoresis (CE) modified with negatively charged cyclodextrins (CDs) has been presented to describe the dependence of chiral selectivity on the buffer pH and the chiral selector concentration. The electrophoretic method to determine the parameters of the model has also been developed. The model has been tested with racemic epinephrine and isoproterenol as target analytes and sulfonated beta-CD as chiral selector. The agreements have been found between the calculated and the measured values. Some significant conclusions to optimize chiral CE separation have been derived from the model and proven by the experiments. Electrochemical detection was used to meet the requirement of the low introduced concentration of analytes.  相似文献   

6.
Capillary EKC has been established as a versatile and robust CE method for the separation of enantiomers. Within the chiral selectors added to the BGE CDs continue as the most widely used selectors due to their structural variety and commercial availability. This is reflected in the large number of practical applications of CDs to analytical enantioseparations that have been reported between January 2006 and January 2008, the period of time covered by this review. Most of these applications cover aspects of life sciences such as drug analysis, bioanalysis, environmental analysis, or food analysis. Moreover, new CD derivatives have been developed in an attempt to achieve altered enantioselectivities and to further broaden the application range. Finally, efforts will be summarized that aim at an understanding of the molecular level of the chiral recognition between CDs and the analytes.  相似文献   

7.
The 2S- and 2R-diastereomers of major flavanone-7-O-glycosides found in sweet orange (Citrus sinensis), mandarine (Citrus deliciosa), grapefruit (Citrus paradisi), lemon (Citrus limon), and sour or bitter orange juice (Citrus aurantium) were separated for the first time by chiral capillary electrophoresis (CE) employing various buffers with combined chiral selectors. Native cyclodextrins (CDs), neutral and charged CD derivatives were examined as chiral additives to the background electrolyte (BGE). Separation efficiency has not proved satisfactory with one single CD as chiral selector in the buffer, a full and simultaneous separation could often be achieved only by using combined buffer with two different CDs. Chiral separation of major flavanones in sweet orange, mandarine and grapefruit juices raised more difficulties than in lemon and sour orange juices as narirutin will not readily build complexes with most CDs. Diastereomeric flavanones of mature and immature grapefruits were compared and some differences were found: naringin showed different diastereomeric ratio and 2S-prunin appeared only in immature grapefruit. Marmalade was also examined by chiral CE. Its major flavanones corresponded to flavanone pattern of mixed sour and sweet oranges.  相似文献   

8.
The separation of thalidomide (TD) and its hydroxylated metabolites including their simultaneous enantioseparation was studied using three different polysaccharide-type chiral stationary phases (CSPs) in combination with polar organic mobile phases. Three different techniques, high-performance liquid chromatography in common-size columns, capillary LC and nonaqueous capillary electrochromatography were compared in terms of separation. As this study illustrates, polar organic mobile phases represent a valuable extension for less polar and polar aqueous-organic mobile phases in combination with polysaccharide CSPs. Chiralpak AD consisting of 25% of amylose-tris(3,5-dimethylphenylcarbamate) coated on wide-pore aminopropylsilanized silica gel exhibited higher resolving ability compared to the similar cellulose derivative (Chiralcel OD) as well as to cellulose-tris(4-methylbenzoate) (Chiralcel OJ) CSPs for this particular set of chiral analytes. Baseline separation and simultaneous enantioseparation of all three compounds could be achieved under optimized separation conditions.  相似文献   

9.
Capillary electrophoresis (CE) is a powerful separation technique that was used in a wide range of analytical chemical applications. Cyclodextrins(CDs) are the most commonly used chiral selectors in chiral capillary electrophoresis at the present time. Under neutral conditions, however, native CDs are neutral and usually applicable only for the enantioseparation of charged analyses. To overcome this defect we modified α- and β-CD with a L-cysteine moiety and used the CD derivatives as chiral selectors for the separation of a-amino acid enantiomers by the ligand exchange mode.  相似文献   

10.
TANAKA Yoshihide 《色谱》2002,20(4):317-327
 Capillary electrophoresis (CE) has become a powerful tool for enantiomer separations during the last decade. Since 1993, the author has investigated enantiomer separations by affinity capillary electrophoresis (affinity CE) with some proteins and by cyclodextrin electrokinetic chromatography (CDEKC) with some charged cyclodextrins (CDs). Many successful enantiomer separations are demonstrated from our study in this review article. In the enantiomer separations by affinity CE, the deterioration of detection  相似文献   

11.
Separations of neutral and basic racemates were performed using five different anionic cyclodextrin (CD) derivatives as chiral selectors, viz. carboxymethylated β-CD, β-CD phosphate sodium salt, sulfobutyl ether β-CD sodium salt, carboxymethylated γ-CD, and γ-CD phosphate sodium salt. For the separation of neutral racemates, an untreated fused silica capillary was employed and various neutral racemates were successfully separated. Since the pH of the buffer affected the electroosmotic flow (EOF), the resolution was improved by changing the buffer pH. A polyacrylamide coated capillary was employed for the separation of basic racemates to suppress EOF and to prevent adsorption of cationic analyte on the capillary surface. By choosing an appropriate type and concentration of anionic CD, about 40 basic racemates were successfully separated. Some rough binding constants of basic analytes with an anionic β-CD were measured to discuss the optimum concentration of the CD. The migration direction was dependent on the binding constants and the concentration of the CD. The analyte strongly bound to the anionic CD migrated towards the anode but the weakly bound one moved towards the cathode. Anionic γ-CDs were also very useful for the separation of basic enantiomers. Five neutral CDs were employed as chiral selectors to compare selectivity between charged and neutral CDs, and eleven racemates could only be resolved using anionic CDs. The separation of some basic racemates in human plasma was also described. The direct injection of plasma samples was possible for some enantiomers that did not interact strongly with plasma proteins.  相似文献   

12.
The synthesis of mono-6-(3-methylimidazolium)-6-deoxyperphenylcarbamoyl-beta-cyclodextrin chloride (MPCCD) and its application in chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) are being reported. This chiral selector is coated onto silica gel in different weight percentages (15, 20 and 35%, w/w) to obtain CSPs having different loading content. These new chiral stationary phases are tested using normal-phase HPLC for enantioseparation of racemic aromatic alcohols. Indeed, the enantiodiscrimination abilities of these CSPs are found to be influenced by the loading content of the chiral selector. Among the three columns (MPCCD-C15, MPCCD-C20 and MPCCD-C35), the best enantioseparation results are obtained using a column containing 20% (w/w) of MPCCD (MPCCD-C20). The resolution (R(s)) obtained for p-fluorophenylethanol, p-chlorophenylethanol, p-bromophenylethanol, p-iodophenylethanol and p-fluorophenyl-3-buten-1-ol using MPCCD-C20 ranges from 3.83 to 5.65. Good enantioseparation results are obtained for these analytes under SFC separation conditions using the MPCCD-C20 column.  相似文献   

13.
Gas chromatography columns coated with 10% permethylated beta- and gamma-cyclodextrin in 85% dimethyl-15% diphenyl polysiloxane (beta- and gamma-PMCD, respectively) and 1:1 mixures are prepared and tested with regard to the enantioseparation of chiral chloropesticides. On the columns with the individual O-methylated cyclodextrins (O-tCDs), the enantiomers of aaeeee-hexachlorocyclohexane (alpha-HCH), e-aeee-1,3,4,5,6-pentachlorocyclohex-1-ene (beta-PCCH), and e-aaee-1,3,4,5,6-pentachlorocyclohex-1-ene (gamma-PCCH), cis- and trans-chlordane, and cis-heptachlor epoxide are separated on both columns, with the exception of the latter being separated only on beta-PMCD. On the column coated with 5% beta- and 5% gamma-PMCD, the resulting separation factor (a) is virtually 1/2 of the arithmetric mean of the elution-dependent separation factors on the individual O-tCDs. In case of reversed elution order on beta- and gamma-PMCD, the enantiomers are not resolved on the mixed columns as is the case with cis-chlordane. Likewise, the lower resolution of the gamma-PCCH enantiomers on the mixed columns prove the reversed elution order on beta- and gamma-PMCD without having enantioenriched standards available. On the column coated with 5% beta- and 5% gamma-PMCD, similar retention times to those observed on both 10% beta-PMCD and 10% gamma-PMCD are obtained. On the column coated with 10% beta- and 10% gamma-PMCD, significantly longer retention times are obtained compared with the columns that contain a total of 10% chiral stationary phase (CSP). This indicates that a relevant part of the interaction of the analytes with the chiral selector is non-enantioselective and, thus, only delays the elution of both enantiomers. Moreover, these non-enantioselective interactions prevent a direct comparison of CSPs with different amounts of the chiral selector. However, this is possible by using mixed phases of two CSPs with similar properties. Using this system, it is demonstrated that for the organochlorine compounds studied, no higher separation factor is observed on the mixed CSPs than on the individual O-tCD with the higher separation factor. Estimations allow a prediction that enantioseparations of organohalogen compounds can be achieved on columns coated with as little as 1% of the CSP.  相似文献   

14.
A pair of cis-trans isomeric chiral stationary phases (CSPs) derived from (S)-1-(1-naphtyl)ethylamine was prepared. The chromatographic behaviours on both CSPs with regard to the resolution of enantiomeric amino acids, amino alcohols, amines, and carboxylic acid were studied. According to separation factors, the trans-CSP showed better chiral recognition ability for the separation of most analytes chosen in this study. Three homologous series of the alkyl esters of racemic amino acids were resolved on both CSPs using n-hexane-2-propanol and n-hexane-dichloromethane as mobile phases. The trans-CSP also showed better enantioselectivity for the resolution of homologues. A reverse of elution order was observed for the resolution of the homologous series of phenylglycine alkyl esters on both CSPs. It was found that the relationship between the separation factor and the alkyl chain length of the ester homologous series depended upon the components of mobile phase. A higher magnitude of difference between the two CSPs in enantioselectivity for the resolution of a given homologue was obtained when n-hexane-dichloromethane was used as a mobile phase. A chiral recognition process, in which steric repulsion, face-to-face π-π interaction, face-to-edge π-π interaction and hydrogen bonding interaction were involved, was also suggested to describe the separation of enantiomeric homologues on both CSPs. This study clearly indicates that the chiral resolution is influenced by the geometry of the double bond in a CSP.  相似文献   

15.
A novel, positively charged, copolymer of allylamine and 2-hydroxy-3-methacryloyl-beta-cyclodextrin was synthesized to be used as a chiral selector in capillary electrophoresis. In the copolymer, cyclodextrin molecules are spaced from the backbone though a spacer arm which prevents sterical hindrance of the CD cavity. The self-mobility of the CD polymer in its charged form, opposite to the analytes, is the cause for the enhanced separation factor provided by this selector. Moreover, the positive charged polymer induces a reversal of electroosmotic flow which is beneficial in enantioseparations of acidic compounds as it reduces analysis time and increases peak efficiency. The ability of this copolymer to act as a CE chiral selector in the separation of 2,4-dinitrophenylamino acid enantiomers was investigated in coated and uncoated capillaries and its performance was much better then that of native beta-cyclodextrin.  相似文献   

16.
Four cationic beta-cyclodextrin derivatives, namely mono-6-(3-methylimidazolium)-6-deoxy-perphenylcarbamoyl-beta-cyclodextrin chloride (MPCCD), mono-6-(3-methylimidazolium)-6-deoxyper(3,5-dimethylphenylcarbamoyl)-beta-cyclodextrin chloride (MDPCCD), mono-6-(3-octylimidazolium)-6-deoxyperphenylcarbamoyl-beta-cyclodextrin chloride (OPCCD) and mono-6-(3-octylimidazolium)-6-deoxyper(3,5-dimethylphenylcarbamoyl)-beta-cyclodextrin chloride (ODPCCD), have been synthesized and physically coated onto porous spherical silica gel to obtain novel chiral stationary phases (CSPs). The performances of these CSPs are studied on high-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) using 18 racemic aryl alcohols as test analytes. Among these four CSPs, OPCCD shows the best separation results for all analytes on both HPLC and SFC analyses. Chromatographic studies reveal that the CSPs consisting of an n-octyl group on the imidazolium moiety and phenylcarbamoyl groups on the cyclodextrin ring provide enhancement of analyte-chiral substrate interactions over CSPs bearing the methyl group on the imidazolium moiety and 3,5-dimethylphenylcarbamoyl groups on the cyclodextrin ring.  相似文献   

17.
The members of the enantiomeric pairs frequently show rather different biological effects, so their chiral selective synthesis, pharmacological studies and analysis are necessary. CE has unique advantages in chiral analysis. The most frequently used chiral selectors are CDs in this field. This paper gives a short view on the advantages on CE in direct chiral separations, emphasizing the role of CDs. The reason for the broad selectivity spectra of CDs is discussed in detail. The physical background of chiral selective separations is briefly shown in CE. Their interaction mechanisms are shortly defined. The general trend of their use is statistically evaluated. Most frequently used CDs and CD derivatives are characterized. Advantages of ionizable CDs and single-isomer derivatives are shown. The general trend of their use is established.  相似文献   

18.
The achiral separation of dihydropyrimidinone (DHP) methyl ester and its corresponding carboxylic acid and the chiral separation of their respective enantiomers were achieved in a single analysis using capillary electrophoresis (CE) with quaternary ammonium-beta-cyclodextrin (QA-beta-CD) as a chiral buffer additive. Separation of the DHP methyl ester from the corresponding carboxylic acid was achieved because the acid was negatively charged at pH 8.3 of the running buffer and the ester is neutral. Upon the addition of QA-beta-CD, the enantiomers of the acid and ester were well resolved before and after the electroosmotic flow, respectively. In addition, the minor DHP methyl ester enantiomer (R isomer) was well separated from several impurities. This CE system was used to monitor the progress of a bioresolution reaction that utilizes an enzyme to convert the R isomer of the ester to its corresponding acid. The quantities of all four enantiomers can be determined using a single set of CE conditions. In addition, it is demonstrated that samples can be directly injected into the capillary without sample pretreatment due to the fact that the coating of the cationic CD on the capillary surface prevents adsorption of the positively charged enzyme. The effects of other experimental parameters such as type of CDs, concentration of CDs, pH, temperature, and the preconditioning of capillary were also studied.  相似文献   

19.
Simple equations and theoretical models, related to enantioselectivity (kappa) and C, have been developed for prediction of electrophoretic mobility difference (Deltamu) and separation selectivity (alpha) for enantiomers in CE using dual CDs, where alpha and kappa are defined as the ratio of mu and the ratio of binding constant (K) for enantiomers to each CD, respectively, C the CD concentration, and the average K for enantiomers and each CD. Experiments were carried out using dual CDs as beta-CD and dimethyl-beta-cyclodextrin (DM-beta-CD) and test analytes as five pairs of amphetamine drug enantiomers. A change in observed Deltamu and alpha of enantiomers in dual CDs was found to be in excellent agreement with the theoretical models. For example, in comparison with single CD1, dual CDs can enhance Deltamu and alpha up to the maximum value when enantiomers migrate with the same order in CD1 and CD2, and have the value of rho > 1.0, where rho is the enantioselectivity ratio for CD2 to CD1, while worse Deltamu and alpha are obtained for enantiomers with rho < 1.0.  相似文献   

20.
Baseline separation of ten new, substituted [1-(imidazo-1-yl)-1-phenylmethyl)] benzothiazolinone and benzoxazolinone derivatives with one chiral center was achieved using cyclodextrin-capillary zone electrophoresis (CD-CZE). A method for the enantiomeric resolution of these compounds was developed using neutral CDs (native alpha-, beta-, gamma-CDs or alpha-, beta-, gamma-hydroxypropyl (HP)-CDs) as chiral selectors. Operational parameters including the nature and concentration of the chiral selectors, pH, ionic strength, organic modifiers, temperature, and applied voltage were investigated. The use of neutral CDs provides enantiomeric resolution by inclusion of compounds in the CD cavity. The HP-alpha-CD and HP-beta-CD were found to be the most effective complexing agents and allowed efficient enantiomeric resolutions. Optimal separation of N-imidazole derivatives was obtained using 50 mM phosphate buffer at pH 2.5 containing either HP-alpha-CD or HP-beta-CD (7.5-12.5 mM) at 25 degrees C, with an applied field of 0.50 kV.cm(-1) giving resolution factors Rs superior to 1.70 with migration times of the second enantiomer less than 13 min. The same enantiomer migration order observed for all molecules can be related to a close interaction mechanism with CDs. The influence of structural features of the solutes on Rs and tm was studied. The lipophilic character (log kw) of the solutes and the apparent and averaged association constants of inclusion complexes for four compounds with the six different CDs led us to rationalize the enantioseparation mechanisms. The conclusions were corroborated with reversed-phase high-performance liquid chromatography (HPLC) on chiral stationary phases (CSPs) based on CDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号