首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文主要介绍一类带有治愈率的HIV感染的CD4 T细胞模型的动力学性质,同时证明了如果基本再生数R0<1,HIV感染消失;如果R0>1,HIV感染持续.然后进行数值模拟,给出了地方性平衡点E·全局稳定的参数域,得到了地方性平衡点E·不稳定时周期解存在.  相似文献   

2.
In this paper, we study a virus dynamics model with logistic mitosis, cure rate, and intracellular delay. By means of construction of a suitable Lyapunov functionals, obtained by linear combinations of Volterra—type functions, composite quadratic functions and Volterra—type functionals, we provide the global stability for this model. If R0, the basic reproductive number, satisfies R0 ≤ 1, then the infection‐free equilibrium state is globally asymptotically stable. Our system is persistent if R0 > 1. On the other hand, if R0 > 1, then infection‐free equilibrium becomes unstable and a unique infected equilibrium exists. The local stability analysis is carried out for the infected equilibrium, and it is shown that, if the parameters satisfy a condition, the infected equilibrium can be unstable and a Hopf bifurcation can occur. We also have that if R0 > 1, then the infected equilibrium state is globally asymptotically stable if a sufficient condition is satisfied. We illustrate our findings with some numerical simulations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, an impulsive birth and infection age SIS epidemic model is studied. Since infection age is an important factor of epidemic progression, we incorporate the infection age into the model. In this model, we analyze the dynamical behaviors of this model and point out that there exists an infection‐free periodic solution that is globally asymptotically stable if R0<1. When R1>1, R2<1, then the disease is permanent. Our results indicate that a large period T of pulse, or a small pulse birth rate p is the sufficient condition for the eradication of the disease. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
An infection‐age virus dynamics model for human immunodeficiency virus (or hepatitis B virus) infections with saturation effects of infection rate and immune response is investigated in this paper. It is shown that the global dynamics of the model is completely determined by two critical values R 0, the basic reproductive number for viral infection, and R 1, the viral reproductive number at the immune‐free infection steady state (R 1<R 0). If R 0<1, the uninfected steady state E 0 is globally asymptotically stable; if R 0>1 > R 1, the immune‐free infected steady state E ? is globally asymptotically stable; while if R 1>1, the antibody immune infected steady state is globally asymptotically stable. Moreover, our results show that ignoring the saturation effects of antibody immune response or infection rate will result in an overestimate of the antibody immune reproductive number. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A differential equation model of HIV infection of CD4+T-cells with cure rate is studied. We prove that if the basic reproduction number R0<1, the HIV infection is cleared from the T-cell population and the disease dies out; if R0>1, the HIV infection persists in the host. We find that the chronic disease steady state is globally asymptotically stable if R0>1. Furthermore, we also obtain the conditions for which the system exists an orbitally asymptotically stable periodic solution. Numerical simulations are presented to illustrate the results.  相似文献   

6.
In this paper, a mathematical model for HIV‐1 infection with antibody, cytotoxic T‐lymphocyte immune responses and Beddington–DeAngelis functional response is investigated. The stability of the infection‐free and infected steady states is investigated. The basic reproduction number R0 is identified for the proposed system. If R0 < 1, then there is an infection‐free steady state, which is locally asymptotically stable. Further, the infected steady state is locally asymptotically stable for R0 > 1 in the absence of immune response delay. We use Nyquist criterion to estimate the length of the delay for which stability continues to hold. Also the existence of the Hopf bifurcation is investigated by using immune response delay as a bifurcation parameter. Numerical simulations are presented to justify the analytical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
本文考虑了一个其产品保修期内免费小修的退化 生产系统的定期检修策略. 系统的退化过程包括三个状态: 可控制状态, 不可控制状态, 故障状态. 过程呆在可控制状态和不可控制状态的时间假设都服从指数分布. 生产系统在固定的时刻t或发生故障时进行检修, 两者以先发生为准. 本文讨论了使单位产品每周期期望成本最小的最优定期检修时间本文考虑了一个其产品保修期内免费小修的退化生产系统的定期检修策略.系统的退化过程包括三个状态:可控制状态,不可控制状态,故障状态.过程呆在可控制状态和不可控制状态的时间假设都服从指数分布.生产系统在固定的时刻t﹡或发生故障时进行检修,两者以先发生为准.本文讨论了使单位产品每周期期望成本最小的最优定期检修时间t﹡,三种特殊情况显示了最优值t的性质.此外,灵敏性分析和数字实例说明了模型中的参数对最优定期检修策略的影响.  相似文献   

8.
Stochastic inventory models, such as continuous review models and periodic review models, require information on the lead time demand. However, information about the form of the probability distribution of the lead time demand is often limited in practice. We relax the assumption that the cumulative distribution function, say F, of the lead time demand is completely known and merely assume that the first two moments of F are known and finte. The minmax distribution free approach for the inventory model consists of finding the most unfavourable distribution for each decision variable and then minimizing over the decision variable. We solve both the continuous review model and the periodic review model with a mixture of backorders and lost sales using the minmax distribution free approach.  相似文献   

9.
In this paper, we propose mathematical models to describe receptor-mediated endocytosis processes. One is a stochastic differential model for the agent-target binding process. The mean extinction time and a standard variation over time profile are evaluated. The other is an age-structured model for demonstrating endocytosis and lysosome processes. A targeted drug delivery system has a complex process in how it is to deliver drug molecules in terms of administration, transportation in blood and across membranes to intracellular space, and inhibition to microtubule polymerization. In particular, receptor-mediated endocytosis of targeted therapeutic agents, such as antibody drug conjugates or ligand-targeted liposome encapsulated nanoparticles, is a key step in understanding the drug delivery mechanism. We discuss stochastic quasi steady state approximation when agent-target complex does not appreciably vary compared with the free agents. This reduces the number of the systems and the parameters; however, an initial time phase cannot be captured. In addition, we discuss the strengths and weaknesses when the age-structured model induces the reduced model compared with the full model that considers endocytosis and lysosome processes. If the total mean retention time until payload release in intracellular space is known, then the age-structured model with the Erlang distribution may fairly predict data of the released payload over time profile with far fewer parameters; however, induced compartments lose their physical meaning and describe only a delay.  相似文献   

10.
为了探讨季节性、蚊子叮咬的偏好性和人类的扩散对疟疾传播的影响,该文提出了一个部分退化的周期反应扩散模型.利用动力系统的持续性理论,研究了模型关于基本再生数R0的阈值动力学.即当R0<1时,疾病灭绝;而当R0>1时,疾病一致持续,且会发生季节性的流行.数值上发现了忽略空间异质性和蚊子叮咬的偏好性会低估疾病传染的风险.  相似文献   

11.
In this paper, we study a class of periodic SEIRS epidemic models and it is shown that the global dynamics is determined by the basic reproduction number R0 which is defined through the spectral radius of a linear integral operator. If R0<1, then the disease free periodic solution is globally asymptotically stable and if R0>1, then the disease persists. Our results really improve the results in [T. Zhang, Z. Teng, On a nonautonomous SEIRS model in epidemiology Bull. Math. Biol. 69 (8) (2007) 2537-2559] for the periodic case. Moreover, from our results, we see that the eradication policy on the basis of the basic reproduction number of the time-averaged system may overestimate the infectious risk of the periodic disease. Numerical simulations which support our theoretical analysis are also given.  相似文献   

12.
In this paper we study a free boundary problem modeling the growth of multi-layer tumors. This free boundary problem contains one parabolic equation and one elliptic equation, defined on an unbounded domain in R2 of the form 0 〈 y 〈p(x,t), where p(x,t) is an unknown function. Unlike previous works on this tumor model where unknown functions are assumed to be periodic and only elliptic equations are evolved in the model, in this paper we consider the case where unknown functions are not periodic functions and both elliptic and parabolic equations appear in the model. It turns out that this problem is more difficult to analyze rigorously. We first prove that this problem is locally well-posed in little H61der spaces. Next we investigate asymptotic behavior of the solution. By using the principle of linearized stability, we prove that if the surface tension coefficient y is larger than a threshold value y〉0, then the unique flat equilibrium is asymptotically stable provided that the constant c representing the ratio between the nutrient diffusion time and the tumor-cell doubling time is sufficiently small.  相似文献   

13.
The transmission mechanism of some animal diseases is complex because of the multiple transmission pathways and multiple-group interactions, which lead to the limited understanding of the dynamics of these diseases transmission. In this paper, a delay multi-group dynamic model is proposed in which time delay is caused by the latency of infection. Under the biologically motivated assumptions, the basic reproduction number $R_0$ is derived and then the global stability of the disease-free equilibrium and the endemic equilibrium is analyzed by Lyapunov functionals and a graph-theoretic approach as for time delay. The results show the global properties of equilibria only depend on the basic reproductive number $R_0$: the disease-free equilibrium is globally asymptotically stable if $R_0\leq 1$; if $R_0>1$, the endemic equilibrium exists and is globally asymptotically stable, which implies time delay span has no effect on the stability of equilibria. Finally, some specific examples are taken to illustrate the utilization of the results and then numerical simulations are used for further discussion. The numerical results show time delay model may experience periodic oscillation behaviors, implying that the spread of animal diseases depends largely on the prevention and control strategies of all sub-populations.  相似文献   

14.
Infection with HIV-1, degrading the human immune system and recent advances of drug therapy to arrest HIV-1 infection, has generated considerable research interest in the area. Bonhoeffer et al. (1997) [1], introduced a population model representing long term dynamics of HIV infection in response to available drug therapies. We consider a similar type of approximate model incorporating time delay in the process of infection on the healthy T cells which, in turn, implies inclusion of a similar delay in the process of viral replication. The model is studied both analytically and numerically. We also include a similar delay in the killing rate of infected CD4+ T cells by Cytotoxic T-Lymphocyte (CTL) and in the stimulation of CTL and analyse two resulting models numerically.The models with no time delay present have two equilibria: one where there is no infection and a non-trivial equilibrium where the infection can persist. If there is no time delay then the non-trivial equilibrium is locally asymptotically stable. Both our analytical results (for the first model) and our numerical results (for all three models) indicate that introduction of a time delay can destabilize the non-trivial equilibrium. The numerical results indicate that such destabilization occurs at realistic time delays and that there is a threshold time delay beneath which the equilibrium with infection present is locally asymptotically stable and above which this equilibrium is unstable and exhibits oscillatory solutions of increasing amplitude.  相似文献   

15.
In this paper, two susceptible‐infected‐susceptible epidemic models with varying total population size, continuous vaccination, and state‐dependent pulse vaccination are formulated to describe the transmission of infectious diseases, such as diphtheria, measles, rubella, pertussis, and so on. The first model incorporates the proportion of infected individuals in population as monitoring threshold value; we analytically show the existence and orbital asymptotical stability of positive order‐1 periodic solution for this control model. The other model determines control strategy by monitoring the proportion of susceptible individuals in population; we also investigate the existence and global orbital asymptotical stability of the disease‐free periodic solution. Theoretical results imply that the disease dies out in the second case. Finally, using realistic parameter values, we carry out some numerical simulations to illustrate the main theoretical results and the feasibility of state‐dependent pulse control strategy.  相似文献   

16.
Summary We consider the one-dimensional heat equation, with a semilinear term and with a nonlinear white noise term. R. Durrett conjectured that this equation arises as a weak limit of the contact process with longrange interactions. We show that our equation possesses a phase transition. To be more precise, we assume that the initial function is nonnegative with bounded total mass. If a certain parameter in the equation is small enough, then the solution dies out to 0 in finite time, with probability 1. If this parameter is large enough, then the solution has a positive probability of never dying out to 0. This result answers a question of Durett.Supported by an NSA grant, and by the Army's Mathematical Sciences Institute at Cornell  相似文献   

17.
We establish the existence and robustness of layered, time-periodic solutions to a reaction-diffusion equation in a bounded domain in , when the diffusion coefficient is sufficiently small and the reaction term is periodic in time and bistable in the state variable. Our results suggest that these patterned, oscillatory solutions are stable and locally unique. The location of the internal layers is characterized through a periodic traveling wave problem for a related one-dimensional reaction-diffusion equation. This one-dimensional problem is of independent interest and for this we establish the existence and uniqueness of a heteroclinic solution which, in constant-velocity moving coodinates, is periodic in time. Furthermore, we prove that the manifold of translates of this solution is globally exponentially asymptotically stable.

  相似文献   


18.
19.
Control of epidemic infections is a very urgent issue today. To develop an appropriate strategy for vaccinations and effectively prevent the disease from arising and spreading, we proposed a modified Susceptible‐Infected‐Removed model with impulsive vaccinations. For the model without vaccinations, we proved global stability of one of the steady states depending on the basic reproduction number R0. As typically in the epidemic models, the threshold value of R0 is 1. If R0 is greater than 1, then the positive steady state called endemic equilibrium exists and is globally stable, whereas for smaller values of R0, it does not exist, and the semi‐trivial steady state called disease‐free equilibrium is globally stable. Using impulsive differential equation comparison theorem, we derived sufficient conditions under which the infectious disease described by the considered model disappears ultimately. The analytical results are illustrated by numerical simulations for Hepatitis B virus infection that confirm the theoretical possibility of the infection elimination because of the proper vaccinations policy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
考虑到HIV-1感染过程中免疫反应和非线性感染函数,建立了一类具有三个分布时滞的HIV-1感染动力学模型.得到了关于病毒感染的基本再生数R0和CTLs免疫反应的基本再生数R1 <R0.通过构造Lyapunov泛函证明了系统具有阈值动力学性质,即当R0≤1时,系统存在全局渐近稳定的无感染平衡点;当R1≤1<R0时,系统出...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号