共查询到20条相似文献,搜索用时 15 毫秒
1.
针对卷积神经网络在物联网设备的加速问题,提出在RISC-V架构的基础上,为卷积神经网络定制专用的加速处理器RCP(RISC-V CNN Processor),通过定制处理器技术从硬件视角进行卷积运算的加速。设计了基于RISC-V处理器的五级流水线,对流水线上的数据冲突和控制冲突提供了相应的解决方案;为卷积计算定制了MLAD/MSTORE/MMUL/MPOOL四条指令,加快了RCP处理器的卷积操作;验证RCP处理器的定制指令集,并通过运行卷积神经网络测试RCP处理器的功能。实验数据表明,使用了定制的指令集技术后,CNN的执行效率提高了3.38倍,加速了物联网设备中的卷积运算。 相似文献
2.
基于卷积神经网络的刺绣风格数字合成 总被引:3,自引:0,他引:3
针对刺绣风格数字化模拟方法立体感不强、缺少线条方向等问题,提出了一种基于深度学习和卷积神经网络的算法,将刺绣艺术风格传输到目标图像。利用图像语义分割网络及风格迁移网络,分别对目标内容图像与刺绣艺术风格图像进行目标提取和风格迁移。首先,输入目标内容图像与刺绣艺术风格图像,采用基于条件随机场的图像语义分割,将目标内容图与刺绣艺术风格图的前景与背景分离,并进行二值化处理,形成掩模图像;其次,将目标内容图与刺绣艺术风格图的RGB颜色空间转换为YIQ;最后,参照掩模图像使用VGG19网络模型提取目标内容图的内容特征及刺绣艺术风格图的风格纹理特征进行目标区域内的风格迁移,从而对刺绣艺术进行数字化模拟。该算法能模拟出具有刺绣艺术效果的结果图像,能更好地模拟真实刺绣艺术的线条方向,突出了线条的立体感。通过使用语义分割与风格迁移相结合的方法,有效模拟了色彩艳丽、立体感强的刺绣艺术风格图像,是对非真实感绘制的有效补充,为刺绣数字化保护与非物质文化传承奠定了基础。 相似文献
3.
土地利用信息是国土资源管理的基础和重要依据,随着高分辨率遥感图像数据的日益增多,迫切需要快速准确的土地利用分类方法。目前应用较广的面向对象的分类方法对空间特征的利用尚不够充分,在特征选择上存在一定的局限性。为此,提出一种基于多尺度学习与深度卷积神经网络(deep convolutional neural network,DCNN)的多尺度神经网络(multi-scale neural network,MSNet)模型,基于残差网络构建了100层编码网络,通过并行输入实现输入图像的多尺度学习,利用膨胀卷积实现特征图像的多尺度学习,设计了一种端到端的分类网络。以浙江省0.5 m分辨率的光学航空遥感图像为数据源进行了实验,总体分类精度达91.97%,并将其与传统全卷积网络(fully convolutional networks,FCN)方法和基于支持向量机(support vector machine,SVM)的面向对象方法进行了对比,结果表明,本文所提方法分类精度更高,分类结果整体性更强。 相似文献
4.
针对刺绣风格数字化模拟方法立体感不强、缺少线条方向等问题,提出了一种基于深度学习和卷积神经网络的算法,将刺绣艺术风格传输到目标图像。利用图像语义分割网络及风格迁移网络,分别对目标内容图像与刺绣艺术风格图像进行目标提取和风格迁移。首先,输入目标内容图像与刺绣艺术风格图像,采用基于条件随机场的图像语义分割,将目标内容图与刺绣艺术风格图的前景与背景分离,并进行二值化处理,形成掩模图像;其次,将目标内容图与刺绣艺术风格图的RGB颜色空间转换为YIQ;最后,参照掩模图像使用VGG19网络模型提取目标内容图的内容特征及刺绣艺术风格图的风格纹理特征进行目标区域内的风格迁移,从而对刺绣艺术进行数字化模拟。该算法能模拟出具有刺绣艺术效果的结果图像,能更好地模拟真实刺绣艺术的线条方向,突出了线条的立体感。通过使用语义分割与风格迁移相结合的方法,有效模拟了色彩艳丽、立体感强的刺绣艺术风格图像,是对非真实感绘制的有效补充,为刺绣数字化保护与非物质文化传承奠定了基础。 相似文献
5.
基于多尺度学习与深度卷积神经网络的遥感图像土地利用分类 总被引:1,自引:0,他引:1
土地利用信息是国土资源管理的基础和重要依据,随着高分辨率遥感图像数据的日益增多,迫切需要快速准确的土地利用分类方法。目前应用较广的面向对象的分类方法对空间特征的利用尚不够充分,在特征选择上存在一定的局限性。为此,提出一种基于多尺度学习与深度卷积神经网络(deep convolutional neural network,DCNN)的多尺度神经网络(multi-scale neural network,MSNet)模型,基于残差网络构建了100层编码网络,通过并行输入实现输入图像的多尺度学习,利用膨胀卷积实现特征图像的多尺度学习,设计了一种端到端的分类网络。以浙江省0.5 m分辨率的光学航空遥感图像为数据源进行了实验,总体分类精度达91.97%,并将其与传统全卷积网络(fully convolutional networks,FCN)方法和基于支持向量机(support vector machine,SVM)的面向对象方法进行了对比,结果表明,本文所提方法分类精度更高,分类结果整体性更强。 相似文献
6.
针对短波时变信道码间干扰严重、误符号率高等问题,采用卷积循环神经网络(convolutional recurrent neural network,CRNN),即将卷积神经网络(convolutional neural network,CNN)和循环神经网络(recurrent neural network,RNN)相... 相似文献
7.
为对五轴数控机床旋转轴的热误差进行更精确地预测,解决变工况条件下预测精度不佳与热误差数据获取困难的问题,提出了基于改进卷积神经网络的热误差建模方法.采用激光干涉仪与热成像仪采集不同温度下的角度定位误差与热图像,对热误差进行傅里叶函数拟合,将预测目标由不同角度下的热误差转变为拟合函数参数.在VGG网络模型架构上,引入SKNet注意力机制,以提高模型对变工况下的热图像特征提取水平,并采用全局平均池化代替全连接层,以改善过拟合情况.将建立的模型用于热误差预测,结果表明,旋转轴热误差预测RMSE在升温状态下为8.36″,降温条件下为9.57″,预测精度达90%以上,优于普通卷积神经网络模型.结果证实了所提方法在旋转轴热误差建模中的有效性. 相似文献
8.
针对人工设计的描述子(HOG、SIFT等)在基于手绘的图像检索(Sketch Based Image Retrieval,SBIR)领域的局限性,提出了一种融合抽象层级变换和卷积神经网络构建联合深度特征描述子的手绘图像检索方法.首先,提取常规图像的边缘概率图,在此基础上进行不同抽象层级的图像变换,将抽象层级变换图像输入到深度神经网络并提取不同隐层的输出向量,最后,联合不同隐层的输出向量作为手绘图像检索的特征描述子(即联合深度特征描述子).在Flickr15k数据库上对本方法进行了实验验证,结果表明:融合抽象层级变换和联合深度特征描述子的检索效果相较HOG、SIFT等传统方法有显著提高.本方法从图像预处理和特征描述子构建2个方面,对SBIR问题进行了改进,具有更高的准确率. 相似文献
9.
为解决由肺部CT图像对肺结节进行良恶性分类的问题,提出了一个新颖的端到端深度学习网络DenseNet-centercrop。通过在原有的DenseNet结构中的稠密块间增加新的分支,引入了中心剪裁操作。该网络结构具有2个优势:(1)不仅最大程度保留了DenseNet的结构,而且将其稠密连接机制扩展到了稠密块水平,大大丰富了肺结节的多尺度特征。(2)参数量较少,是一种轻量化的网络结构。将基于该网络的肺结节良恶性分类方法在LIDC-IDRI数据集上进行评估,实验结果表明,DenseNet-centercrop极大地提高了DenseNet的性能,较现有的其他肺结节良恶性分类方法具有更高的AUC分值和分类精度。 相似文献
10.
赖清衷卫声熊鹏文黄嘉诚任倩茹 《南昌大学学报(理科版)》2016,40(6):563
介绍BP神经网络与多分类支持向量机等分类模型的基本原理,并基于这两种方法对水质识别与分类的准确度进行实例比较研究,随机抽取了南昌市内2010-2013年水域水质的300组数据为样本,选取了pH,氨氮,Cl-,SO2-3,总硬度,硝酸盐氮为评价的主要特征。通过把训练后的模型在测试集中进行的检验对得到的模型进行评估,表明了BP神经网络和多分类支持向量机均可以较好地解决水质识别与分类过程中存在的复杂性,多变量,非线性等问题,相比较而言多分类支持向量机有较强的鲁棒性,预测结果更为精确稳定,将其应用到水质评价中具有一定的可行性。更多还原 相似文献
11.
电容层析成像系统在工业上用于管道内流体的实时监测,本文提出用神经网络的方法来代替传统的反投影算法进行图像重建,以解决传统算法存在的扭曲形变和空间精度受限的问题.文中用改进的BP算法训练,采用一个两层感知机网络,网络的输入是预处理过的测量电容矢量,输出直接对应到空间图像.实验结果表明使用这一方法,能重建出足够精确的图像 相似文献
12.
为解决现有多数视频人体动作识别3D卷积方法无法区分信息中各维度的重要和非重要特征问题,提出了通过门控循环单元(GatedRecurrentUnit,GRU)和空间注意力增强模块构建时空特征处理网络的方法,基于多级特征融合和多组通道注意力特征选择构建网络,改进基础网络模型Res Net3D对视频人体动作识别中的网络模型.改进后模型在2个公开数据集UCF101和HMDB51上的准确率分别为96.42%和71.08%,与C3D、Two-stream等网络模型相比,具有更高的识别准确率. 相似文献
13.
讨论了如何利用走时数据重建声波地震波或某些电磁波这类波长较长的射线慢度(波速的倒数)分布问题。首先根据费马原理,利用加权有向图求射线在给定介质中的最短传播路径,然后,基于Hopifield神经网络的联想功能,提出一种射线非直线传播的重建慢度分布的方法,计算机模拟表明,迭代是收敛的,并且能得到较好的慢度重建结果。 相似文献
14.
现有的后门检测方法研究主要聚焦于白盒场景,然而现实中很难获得对模型的完全访问权限。为此,本文研究了基于蒙特卡洛梯度估计的黑盒神经网络后门检测方法。通过将黑盒场景下后门触发器的逆向视作零阶优化问题,提出了黑盒触发器逆向算法来检测黑盒神经网络是否被植入后门,利用重要性采样结合规范化判断标准和早停策略,进一步提出了快速黑盒后门检测算法以降低黑盒后门检测的开销。在3个流行图像数据集上的实验结果均表明提出的方法能准确区分正常模型与植入后门的模型,且可以得到有效的后门触发器。 相似文献
15.
在金融领域的资产定价模型修正过程中,股市的非线性现象往往被选择性忽视,未纳入模型框架,现有模型亦无法刻画因子之间的非线性定价结构。为解决上述问题,引入了机器学习领域中的神经网络模型,以捕获市场组合收益率、市值、账面市值比三因子间的非线性定价结构,并对股票收益率进行预测。将该模型与经典Fama-French三因子模型在样本外拟合优度、多空策略业绩表现上做了对比,结果表明:神经网络模型能精准捕获市场组合收益率、市值、账面市值比3个因子之间的非线性关系,且在样本外拟合优度、多空策略业绩表现上均要优于传统三因子线性定价模型。 相似文献
16.
在金融领域的资产定价模型修正过程中,股市的非线性现象往往被选择性忽视,未纳入模型框架,现有模型亦无法刻画因子之间的非线性定价结构。为解决上述问题,引入了机器学习领域中的神经网络模型,以捕获市场组合收益率、市值、账面市值比三因子间的非线性定价结构,并对股票收益率进行预测。将该模型与经典Fama-French三因子模型在样本外拟合优度、多空策略业绩表现上做了对比,结果表明:神经网络模型能精准捕获市场组合收益率、市值、账面市值比3个因子之间的非线性关系,且在样本外拟合优度、多空策略业绩表现上均要优于传统三因子线性定价模型。 相似文献
17.
传统的BP神经网络训练算法,导致训练时间长且易于陷入局部极小点.本文将粒子群优化算法用于神经网络预测模型的学习训练.实验结果表明,基于粒子群优化的神经网络学习算法更易于实现,且能更快地收敛于全局最优解. 相似文献
18.
针对残差学习的超分辨率重建方法中存在感受野受限、分辨率低、复杂性较高、边缘信息丢失等问题,提出一种锯齿空洞残差卷积的神经网络.首先,基于ResNet网络设计了锯齿空洞卷积,扩大网络的感受野,消除网络的"网格化",并增加跳跃连接,将图像特征传递到更深的网路;然后,通过最后一个卷积层得到与原始图像大小相等的残差图像;最后,... 相似文献
19.
张天助周辉林杨仙 《南昌大学学报(理科版)》2021,45(1):91
针对传统地下目标识别算法中特征提取方法的缺陷,鉴于深度学习中的卷积神经网络(CNN)能自动从数据中提取特征,但CNN自带的分类器不能很好的解决非线性分类问题,由于SVM具有良好的泛化分类能力,为此提出基于CNN-SVM的地下目标形状识别方法。本文首先在地表面光滑场景下,利用该方法对地下圆形和矩形目标识别,然后加大场景难度,在地表面粗糙场景下进行地下目标形状识别。实验结果表明,相比传统人工设计的特征分类方法,该算法利用CNN自动提取的特征联合SVM提高了CNN的分类准确率,并且在两种场景下都具有更高的地下目标识别精度。 相似文献
20.
相对传统的行人检测技术,基于深度学习的行人检测技术具有压倒性的优势,然而由于深度卷积网络规模庞大,需要专用的处理器,限制了行人检测系统的推广.针对上述问题,提出一种网络规模适中的深度卷积网络模型,在保证检测精度的前提下提高检测模型的普适性.以低维度的浅层卷积神经网络为基础,分别从网络层数、感受野大小和特征图3个角度出发... 相似文献