首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
Samples of Pd/C and Pd–Ag/C, where C represents carbon nanofibers (CNFs), are synthesized by methane decomposition on a Ni–Cu–Fe/Al2O3 catalyst. The properties of Pd/CNF are studied in the reaction of selective hydrogenation of acetylene into ethylene. It is found that the activity of the catalyst in hydrogenation reaction increases, while selectivity decreases considerably when the palladium content rises. The obtained dependences are caused by the features of palladium’s interaction with the carbon support. At a low Pd content (up to 0.04 wt %) in the catalyst, the metal is inserted into the interlayer space of graphite and the catalytic activity is zero. It is established by EXAFS that the main share of palladium in catalysts of 0.05–0.1 wt % Pd/CNF constitutes the metal in the atomically dispersed state. The coordination environment of palladium atoms consists of carbon atoms. An increase in the palladium content in a Pd/CNF catalyst up to 0.3 wt % leads to the formation of highly dispersed (0.8–1 nm) Pd particles. The Pd/CNF samples where palladium is mainly in the atomically dispersed state exhibit the highest selectivity in the acetylene hydrogenation reaction. The addition of silver to a 0.1 wt % Pd/CNF catalyst initially probably leads to the formation of Pd–Ag clusters and then to alloyed Pd–Ag particles. An increase in the silver content in the catalyst above 0.3% causes the enlargement of the alloyed particles and the palladium atoms are blocked by a silver layer, which considerably decreases the catalytic activity in the selective hydrogenation of acetylene.  相似文献   

2.
Due to the complexity of the structure–activity relationship of the CuAl2O4 spinel catalyst, optimization of the catalyst structure is a great challenge. In this paper, three different CuAl2O4 spinel catalysts were prepared by the solid-phase method using copper hydroxide, copper nitrate, and copper oxide as the copper source, respectively, to study the difference in the structure of CuAl2O4 spinel catalysts induced by the raw materials and the catalytic behavior for CO hydrogenation. The structure of CuAl2O4 spinel catalyst was characterized by XRD, BET, SEM, TEM, H2-TPR and XPS. The activity of CO hydrogenation over the CuAl2O4 spinel catalyst without pre-reduction was evaluated in the slurry reactor. The results demonstrated that different copper sources had obvious influence on the CuAl2O4 spinel texture properties, surface enrichment degree, as well as decomposition and reduction ability, which further regulated the ratio of Cu+/Cu0 and thus affected the catalytic performance, especially the alcohol distribution. The CuAl2O4 spinel, employing copper hydroxide as the copper source, showed better selectivity of C2+OH, which was assigned to a higher ratio of Cu+/Cu0, along with larger pore size and pore volume. Moreover, the synergistic effect between Cu0 and γ-Al2O3 improved the selectivity of dimethyl ether.  相似文献   

3.
A comparative catalytic study of Pd–Ag bimetallic catalysts and the commercial Lindlar catalyst (Pd–Pb/CaCO3) has been carried out in the hydrogenation of phenylacetylene (PA) and diphenylacetylene (DPA). The Pd–Ag catalysts have been prepared using the heterobimetallic complex PdAg2(OAc)4(HOAc)4 supported on MgAl2O4 and aluminas (α-Al2O3 and γ-Al2O3). Physicochemical studies have demonstrated that the reduction of supported Pd–Ag complex with hydrogen results in homogeneous Pd–Ag nanoparticles. Equal in selectivity to the Lindlar catalyst, the Pd–Ag catalysts are more active in DPA hydrogenation. The synthesized Pd–Ag catalysts are active and selective in PA hydrogenation as well, but the unfavorable ratio of the rates of the first and second stages of the process makes it difficult to kinetically control the reaction. The most promising results have been obtained for the Pd–Ag2/α-Al2O3 catalyst. Although this catalyst is less active, it is very selective and allows efficient kinetic control of the process to be carried out owing to the fact that, with this catalyst, the rate of hydrogenation of the resulting styrene is much lower than the rate of hydrogenation of the initial PA.  相似文献   

4.
5.
《Comptes Rendus Chimie》2016,19(10):1174-1183
New composites based on the [RhMo6O24H6]3− (RhMo6) heteropolyanion supported on pillared (PILC), heterostructured (PCH) and functionalized(PILC-F) and (PCH-F) systems based on clays were prepared, characterized and tested as catalysts in the liquid-phase hydrogenation of cinnamaldehyde. The original phases and supported systems were characterized using several techniques such as powder X-ray diffraction (XRD), scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM–EDS), Raman microprobe studies, X-ray photoelectron spectroscopy (XPS), thermogravimetry and differential thermal analyses (TG-DSC), temperature programmed reduction (TPR), and textural analysis (BET method), which confirmed their functionalization, physicochemical modification and the nature of Mo adsorbed species. Active acidic, basic and redox sites were determined by temperature programmed surface reaction (TPSR). Mo loading reached 7 wt% for the system RhMo6/PCH-F and 3 wt% for the system RhMo6/PILC-F, while unfunctionalized clay systems showed a value of 1 wt% of Mo. The catalytic performance showed that PCH-based composites were the most active and reached up to 56% conversion at 360 min of reaction when tested in liquid-phase cinnamaldehyde hydrogenation. The selectivity for all the systems was mainly toward hydrocinnamic aldehyde (HCAL) and reached 77% for the RhMo6/PCH-F catalyst at 25% conversion.  相似文献   

6.
7.
Development of active and non-noble metal-based catalyst for H2 production via NH3 decomposition is crucial for the implementation of NH3 as a H2 carrier.Co-based catalysts have received increasing attention because of its high intrinsic activity and moderate cost.In this work,we examined the effect of BaNH,CaNH and Mg3 N2 on the catalytic activity of Co in the NH3 decomposition reaction.The H2 formation rate ranks the order as Co-BaNH>Co-CaNH>Co-Mg3 N2≈Co/CNTs within a reaction temperature range of 300-550℃.It is worth pointing out that the H2 formation rate of Co-BaNH at 500℃reaches20 mmolH2 gcat-1 min-1,which is comparable to those of the active Ru/Al2 O3(ca.17 mmolH2 gcat-1 min1)and Ru/AC(21 mmolH2 gcat-1 min-1)catalysts under the similar reaction conditions.In-depth research shows that Co-BaNH exhibits an obviously higher intrinsic activity and much lower Ea(46.2 kJ mol-1)than other Co-based catalysts,suggesting that BaNH may play a different role from CaNH,Mg3 N2 and CNTs during the catalytic process.Combined results of XRD,Ar-TPD and XAS show that a[Co-N-Ba]-like intermediate species is likely formed at the interface of Co metal and BaNH,which may lead to a more energy-efficient reaction pathway than that of neat Co metal for NH3 decomposition.  相似文献   

8.
《Tetrahedron: Asymmetry》2001,12(2):197-204
A series of alkyl-, halogen- and nitro-substituted salen ligands, 1, have been employed in the asymmetric cyclopropanation of styrene with ethyl diazoacetate by its ruthenium(II) complex with [RuCl2(p-cymene)]2 or RuCl2(PPh3)3 as precursors. The introduction of appropriate electron withdrawing groups in the salen ligands benefited the enantioselectivity of the reaction. Some additives, including O-donor, N-donor and P-donor ligands, were added to the reaction to improve the enantioselectivity and activity, and e.e.s of up to 80% were achieved. In the salen/[RuCl2(p-cymene)]2 system, the (1R,2S)-isomer was obtained in 80.2% e.e. by using the salen ligand 1f derived from 3,5-dibrominated salicylaldehyde with Et3N as additive. E.e.s of up to 81.3% for (1S,2R)-isomers were achieved by using the complex 2 synthesized from the nitro-substituted ligand 1m and RuCl2(PPh3)3. A possible mechanism was also discussed.  相似文献   

9.
The relation between catalytic reactivities and metal/metal oxide ratios, as well as the functions of the metal and the metal oxides were investigated in the CO_2 hydrogenation reaction over highly active Co_x(CoO)1–xcatalysts in operando. The catalytic reactivity of the samples in the CO_2 methanation improves with the increased Co O concentration. Strikingly, the sample with the highest concentration of CoO, i.e., Co0.2(CoO)0.8, shows activity at temperatures lower than 200 °C where the other samples with less CoO are inactive. The origins of this improvement are the increased amount and moderate binding of adsorbed CO_2 on CoO sites. The derivative adsorption species are found to be intermediates of the CH4 formation. The metallic Co functions as the electronically catalytic site which provides electrons for the hydrogenation steps. As a result, an abundant amount of CoO combined with Co is the optimal composition of the catalyst for achieving the highest reactivity for CO_2 hydrogenation.  相似文献   

10.
采用改进的两步还原法制备了SiO2负载的Au-Ni合金催化剂,催化剂中Au-Ni纳米颗粒高度分散于SiO2载体表面. Au-Ni合金催化剂在温和条件下芳香硝基化合物选择加氢反应中表现出比两种单金属催化剂更高的活性和选择性,体现出Au-Ni之间明显的协同作用.其中AuNi3/SiO2催化剂具有最好的性能,反应70 min,转化率和选择性分别达到90.8%和93.0%.  相似文献   

11.
采用改进的两步还原法制备了SiO2负载的Au-Ni合金催化剂,催化剂中Au-Ni纳米颗粒高度分散于SiO2载体表面. Au-Ni合金催化剂在温和条件下芳香硝基化合物选择加氢反应中表现出比两种单金属催化剂更高的活性和选择性,体现出Au-Ni之间明显的协同作用.其中AuNi3/SiO2催化剂具有最好的性能,反应70 min,转化率和选择性分别达到90.8%和93.0%.  相似文献   

12.
Polysiloxane-encapsulated "Pd"-nanoclusters were generated by reduction of Pd(OAc)(2) with polymethylhydrosiloxane, which functions as a reducing agent as well as a capping material for production and stabilization of catalytically active "Pd"-nanoparticles. Chemoselective hydrogenation of functional conjugated alkenes was achieved by in-situ- or ex-situ-generated polysiloxane-stabilized "Pd"-nanoclusters under mild reaction conditions in high yields. Electron microscopy, UV-vis, and NMR studies of the reaction mixture during the catalytic transformation were performed and, in conjunction with catalyst poisoning experiments, demonstrated unequivocally the role of polysiloxane-encapsulated "Pd"-nanoclusters as the real catalytic species. The recyclability of the "Pd"-nanoclusters was established by reusing the solid left after the reaction.  相似文献   

13.
Single-atomic catalysts(SACs) caught considerable attention due to their unique structural properties,complete exposed active site, and 100% atom utilization efficiency with remarkable catalytic activity.Mesoporous single-atomic cobalt catalyst with Co-N4 active sites was synthesized by using nitrogendoped graphene derived from acrylonitrile. Single-atomic cobalt was observed by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM) in...  相似文献   

14.
It is generally accepted that good hydrogenation noble and nonnoble metal catalysts such as Pt, Ru, or Ni are not chemoselective for hydrogenation of nitro groups in substituted aromatic molecules. We have found that it is possible to transform nonchemoselective into highly chemoselective metal catalysts by controlling the coordination of metal surface atoms while introducing a cooperative effect between the metal and a properly selected support. Thus, highly chemoselective and general hydrogenation Pt, Ru, and Ni catalysts can be prepared by generating nanosized crystals of the metals on the surface of a TiO 2 support and decorating the exposed (111) and (100) crystal faces by means of a simple catalyst activation procedure. By doing this, it has been possible to change the relative rate for hydrogenating competitive groups present in the molecule by almost 2 orders of magnitude, increasing the chemoselectivity from less than 1% to more than 95%.  相似文献   

15.
A new heterogeneous catalytic transfer hydrogenation (CTH) system, consisting of a non-flammable supported Au catalyst along with 2-propanol as the hydrogen donor, was proven to be effective for chemoselective reduction of a wide range of aromatic ketones and aldehydes to the corresponding alcohols.  相似文献   

16.
Palladium nanoparticles were prepared, stabilized, and dispersed in water by alkylated branched polyethyleneimine. The palladium nanoparticles were effective aqueous biphasic catalysts for the chemoselective hydrogenation of alkenes with preferential reduction of less hindered double bonds, such as reduction of 3-methylcyclohexene in the presence of 1-methylcyclohexene and 1-octene in the presence of 2-methyl-2-heptene. [structure: see text].  相似文献   

17.
18.
[Structure: see text] A Pd/C-catalyzed chemoselective hydrogenation using diphenylsulfide as a catalyst poison has been developed. This methodology selectively hydrogenates olefin and acetylene functionalities without hydrogenolysis of aromatic carbonyls and halogens, benzyl esters, and N-Cbz protective groups.  相似文献   

19.
Chemoselective hydrogenation of halogenated nitrobenzenes over Pt/C catalysts proceeds effectively in supercritical carbon dioxide (scCO2) to produce halogenated anilines with excellent selectivity; the rate of the hydrogenation of nitro groups is markedly enhanced in scCO2 compared to the neat reaction, and the dehalogenation reaction is significantly suppressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号