首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用基于密度泛函理论(DFT)的M06-2X和MN15方法结合自洽反应场理论的SMD模型方法,研究了水液相环境两性S-型脯氨酸(S-Pro)与Ca~(2+)配合物(S-Pro·Ca~(2+))的旋光异构。考察了S-Pro·Ca~(2+)在3个反应通道a、b和c的旋光异构过程:a通道是以羰基氧为质子迁移媒介;b通道是α-C上的质子先迁移至羰基氧,然后氨基氮上的质子在纸面内向α-C迁移;c通道是以羰基氧和氨基氮为质子迁移媒介。势能面研究表明:隐性溶剂效应下c通道明显具有优势,决速步能垒为221.4 k J/mol;显性溶剂效应下c通道略具优势,决速步能垒降到131.2 k J/mol。结果表明,脯氨酸钙在水液相环境只能很少量地消旋,其用于生命体同补脯氨酸和钙离子具有较好的安全性。  相似文献   

2.
在MP2/6-311++G(3df,2pd)//B3LYP/6-31+G(d,p)水平,采用自洽反应场(SCRF)理论的SMD模型研究了水液相环境下具有氨基和羧基间双氢键的α-丙氨酸(α-Ala)分子的旋光异构。研究发现:α-Ala的旋光异构有a、b和c三个反应通道,分别是质子以羰基氧、羧基及氨基为桥从手性碳的一侧迁移到另一侧。势能面计算结果显示:2个水分子簇的催化及溶剂效应的作用下,三个反应通道的决速步骤能垒分别为154.96、171.79和123.98kJ·mol~(-1),反应通道c为优势通道;3个水分子簇作氢迁移媒介时,反应通道c的决速步骤能垒降至109.61kJ·mol~(-1)。氢氧根水分子团簇的催化使该能垒降至61.83kJ·mol~(-1)。羟基自由基水分子簇致α-Ala损伤有水分子拔氢和羟基自由基拔氢两种机理,反应能垒分别为23.84、80.34kJ·mol~(-1)。结果表明:水液相环境下,α-Ala分子可缓慢地发生旋光异构,氢氧根水分子簇的催化可使α-Ala分子较快地旋光异构,羟基自由基水分子簇可使α-Ala分子迅速损伤。  相似文献   

3.
采用色散校正密度泛函理论的WB97X-D方法和多体微扰理论的MP2方法研究了2种稳定构象的半胱氨酸分子手性对映体转变及水分子簇的催化。反应通道研究发现:半胱氨酸分子的手性对映体转变可以在3个通道a、b和c实现,a和b通道分别是羧基异构和α-氢向氨基氮迁移分步进行和协同进行,c通道是α-氢向羰基氧迁移后羧基氢再向氨基氮迁移。根据R-基异构和α-氢迁移的顺序不同,每个通道又可分为几条路径。势能面计算表明:a是优势反应通道,构象1在a通道的2条路径上的反应活化能分别为264. 7,268. 1 kJ·mol~(-1),构象2在a通道上的反应活化能为267. 6 kJ·mol~(-1);2个水分子簇的催化使构象1和2在a通道的反应活化能分别降至95. 3,72. 4 kJ·mol~(-1)。结果表明:水分子簇的催化可使半胱氨酸分子实现手性对映体转变。  相似文献   

4.
采用密度泛函理论的B3LYP方法、微扰理论的MP2方法和自洽反应场(SCRF)理论的SMD模型方法,研究了水环境下羧基与氨基间为单氢键的α-Ala旋光异构及羟自由基和氢氧根作用的反应。研究发现:α-Ala的旋光异构可在a和b两个通道实现,a通道为羧基顺反异构后,水分子簇作媒介质子以氨基为桥从α碳的一侧向另一侧迁移;b通道为水分子簇作媒介,质子从α碳向氨基氮的迁移与羧基顺反异构协同进行。在a通道,羟自由基水分子簇可致α-Ala损伤。势能面计算表明:水环境下,在a通道3个水分子簇作氢迁移媒介,决速步能垒为113.37 kJ·mol-1,氢氧根水分子簇的催化使该能垒降到64.45 kJ·mol-1;在b通道2个水分子簇作氢迁移媒介,决速步能垒为135.00 kJ·mol-1。羟自由基水分子簇致α-Ala损伤的能垒在水分子抽氢和羟自由基抽氢时分别为24.47和 80.60 kJ·mol-1。  相似文献   

5.
在M06/6-311++G(d,p)和MN15/6-311++G(2df,pd)双水平,研究了α-丙氨酸(α-Ala)与Cr3+的配合物S-α-Ala·Cr3+的手性反转,结合极化连续介质的SMD模型方法研究了水溶剂的作用。S-α-Ala·Cr3+的手性反转有3个通道:a通道是氨基N作质子转移媒介;b通道是羰基O和氨基N联合作质子转移媒介;c通道是羰基O作质子转移媒介。势能面研究表明:气相S-α-Ala·Cr3+在a、b、c通道手性反转的活化能分别是295.6、305.5、123.6 k J/mol;水液相S-α-Ala·Cr3+在a通道的活化能降至95.8 k J/mol,在b通道和c通道的活化能降至108.0 k J/mol。结果表明:气相α-Ala·Cr3+能缓慢消旋,因此光学纯的α-Ala·Cr3+不能在气固相下长期保存;水液相下α-Ala·Cr3+能缓慢消旋,α-Ala·Cr3+只...  相似文献   

6.
在SMD/MP2/6-311++G(3df,2pd)//SMD/WB97X-D/6-311++G(d,p)双理论水平,对水液相环境下氢氧根(OH~-)催化苯丙氨酸(phenylalanine,Phe)分子手性对映体转变及质子的作用进行研究。研究发现:水液相环境下OH~-催化Phe手性转变有OH~-抽α-氢和氢氧根水分子簇(OH~-·H_2O)抽α-氢两种情况。氢氧根水分子簇抽氢时有两个通道a和b,a通道是氢氧根水分子簇与Phe的α-氢和氨基氮氢键作用形成的底物异构;b通道是氢氧根水分子簇与Phe的α-氢和羰基氧氢键作用形成的底物异构。a通道又分为两个路径a1和a2,a1是羧基异构后氢氧根水分子簇抽氢;a2是氢氧根水分子簇直接抽氢。当OH~-抽氢时,Phe的手性转变只能通过氢氧根水分子簇抽氢的a通道上两个路径a1和a2实现。势能面计算结果显示:氢氧根(水分子簇)抽α-氢结合Phe碳负离子抽取水分子(簇)中的质子,很容易使Phe实现手性对映体转变,只是OH~-抽α-氢时决速步能垒更低,路径a2更具优势。质子攻击Phe碳负离子是无势垒放热过程。结果表明,水液相环境下OH~-可以催化Phe的手性对映体转变,质子的存在会进一步加速此反应。  相似文献   

7.
采用密度泛函理论M06-2X和MN15方法,结合自洽反应场理论的SMD模型方法,研究了水液相下羟基负离子(OH-)催化半胱氨酸(Cys)分子的旋光异构反应机理。研究发现,两性Cys分子的消旋反应可以通过OH-直接抽取α-H质子和Cys碳负离子抽取水分子(H2O)质子实现,也可以在两性Cys向中性异构后,通过OH-抽取中性Cys的α-H质子和Cys碳负离子抽取H2O质子实现。势能面计算表明:第1种情况下Cys消旋反应的活化能垒是45.8 k J/mol,第2种情况下Cys消旋反应的活化能垒是51.6 k J/mol,均比水液相下Cys消旋反应的活化能垒104.0 k J/mol低很多。结果表明,水液相下OH-对Cys的旋光异构具有很好的催化作用。  相似文献   

8.
采用基于密度泛函理论的B3LYP方法和从头算的MP2方法,结合自洽反应场理论的SMD模型,研究了布洛芬(Ibu)分子2种稳定构象的旋光异构反应。研究发现:Ibu的旋光异构有氢氧根拔α-氢和氢氧根水分子簇联合拔α-氢两种机理。势能面计算表明:对于构象1,氢氧根拔α-氢时旋光异构的决速步骤能垒为42.69kJ·mol~(-1),氢氧根水分子簇联合拔α-氢时旋光异构的决速步骤能垒为48.83kJ·mol~(-1);对于构象2,氢氧根拔α-氢时旋光异构的决速步骤能垒为38.73kJ·mol~(-1),氢氧根水分子簇联合拔α-氢时旋光异构的决速步骤能垒为50.72kJ·mol~(-1)。质子的存在会使Ibu旋光异构反应的后半程变成无势垒放热反应。结果表明,水液相碱性环境下布洛芬分子可以较快地旋光异构,质子与氢氧根离子共存会使Ibu旋光异构的反应速度更快。  相似文献   

9.
采用基于密度泛函理论的M06方法,研究了气相环境下2种稳定构型的丙氨酸(Ala)与Ca2+配合物的手性转变及水分子的催化。研究发现,Ala_1·Ca2+的手性转变有a和b 2个通道,a通道是α-氢只以羰基氧为桥迁移;b通道是α-氢迁移到羰基氧后,氨基上的质子在纸面内侧向α-碳迁移。Ala_2·Ca2+的手性转变有a、b、c、d 4个通道,a和b通道分别是羧基内质子迁移后,α-氢只以羰基氧为桥迁移和α-氢迁移到羰基氧接质子从氨基氮向α-碳迁移;c通道是钙与氮的配位键断裂后,α-氢向氨基氮迁移;d通道是钙与氮的配位键断裂后,Ala_2·Ca2+向Ala_1·Ca2+异构,再接Ala_1·Ca2+的手性转变。势能面计算表明,Ala_1·Ca2+手性转变的a通道具有优势,总包能垒为134.8 kJ·mol-1,Ala_2·Ca2+手性转变的d通道具有优势,总包能垒为235.3 kJ·mol-1;水分子的催化使能垒分别降至40.8和141.3 kJ·mol-1。结果表明,Ca2+对Ala的手性转变具有催化作用,水分子对丙氨酸Ca2+配合物的手性转变具有极好的催化作用。  相似文献   

10.
采用基于密度泛函理论的M06方法,研究了气相环境下2种稳定构型的丙氨酸(Ala)与Ca2+配合物的手性转变及水分子的催化。研究发现,Ala_1·Ca2+的手性转变有a和b 2个通道,a通道是α-氢只以羰基氧为桥迁移;b通道是α-氢迁移到羰基氧后,氨基上的质子在纸面内侧向α-碳迁移。Ala_2·Ca2+的手性转变有a、b、c、d 4个通道,a和b通道分别是羧基内质子迁移后,α-氢只以羰基氧为桥迁移和α-氢迁移到羰基氧接质子从氨基氮向α-碳迁移;c通道是钙与氮的配位键断裂后,α-氢向氨基氮迁移;d通道是钙与氮的配位键断裂后,Ala_2·Ca2+向Ala_1·Ca2+异构,再接Ala_1·Ca2+的手性转变。势能面计算表明,Ala_1·Ca2+手性转变的a通道具有优势,总包能垒为134.8 kJ·mol-1,Ala_2·Ca2+手性转变的d通道具有优势,总包能垒为235.3 kJ·mol-1;水分子的催化使能垒分别降至40.8和141.3 kJ·mol-1。结果表明,Ca2+对Ala的手性转变具有催化作用,水分子对丙氨酸Ca2+配合物的手性转变具有极好的催化作用。  相似文献   

11.
采用密度泛函理论的M06和MN15方法,结合自洽反应场理论的SMD模型方法,研究了水液相下两性α-丙氨酸与二价铁离子配合物(A·Fe)的构型反转。考察了a、b、c和d共4个反应通道,分别是:α-氢质子以羰基O为桥迁移;α-氢质子迁移到羰基O后,H质子再从氨基N向α-碳迁移;α-氢质子以氨基N为桥迁移;氢负离子以二价铁离子为桥迁移。隐性溶剂效应下d通道最具优势,决速步骤能垒为194.7 kJ/mol;c通道为第二优势通道,决速步骤能垒为222.2 kJ/mol;a和b为劣势通道,决速步骤能垒为262.7 kJ/mol。显性溶剂效应下c通道最具优势,决速步骤能垒降至145.1 kJ/mol;a和b为第二优势通道,决速步骤能垒降至160.4 kJ/mol;d通道为劣势通道,在此通道A·Fe无法消旋。结果表明:水液相环境下A·Fe可以很好地保持其旋光性,α-丙氨酸二价铁盐用于生命体补充二价铁和丙氨酸具有很高的安全性。  相似文献   

12.
采用密度泛函理论的明尼苏达泛函2006(M06)和明尼苏达泛函2015(MN15)方法,结合自洽场理论的溶质全电子密度溶剂化(solvation model based on desity,SMD)模型,研究了水液相下两性α-丙氨酸二价锰配合物(Mn(Ⅱ))的旋光异构。研究结果表明,S-Ala·Mn2+S-Mn(Ⅱ))可在a、b、c和d 4个通道旋光异构,a通道H以O为桥迁移,b通道H以O和N顺次为桥迁移,c通道H以N为桥迁移,d通道H以Mn(Ⅱ)为桥迁移。势能面计算结果表明,c通道最具优势,决速步能垒为220.8 kJ·mol-1;a和b通道同为亚优势通道,决速步能垒为254.8 kJ·mol-1;d通道为劣势通道,决速步能垒为293.3 kJ·mol-1。在水分子(簇)作用下,c通道决速步能垒降至155.1 kJ·mol-1;a和b通道决速步能垒降至165.8 kJ·mol-1;d通道仍为劣势通道,且S-A·Mn无法在该通道旋光异构。水液相下S-A·Mn很难消旋,Mn(Ⅱ)用于生命体补充二价锰和α-丙氨酸具有较好的安全性。  相似文献   

13.
采用密度泛函理论的M06和MN15方法,研究了气相环境下两个稳定的丙氨酸异构体(S-Ala_1和S-Ala_2)与Mn2+配合物(S-A_1和S-A_2)的手性转变。研究发现:S-A_1的手性转变有3个通道a、b和c,a通道先是α-氢向羰基O迁移;b通道是羧基Mn2+螯合环的打开与质子从质子化氨基向羧基负离子的O迁移协同进行;c通道是α-氢先向氨基N迁移。S-A_2的手性转变有2个通道a和b,a通道是α-氢先向氨基N迁移;b通道是先进行羧基内的H迁移。势能面计算表明:S-A_1手性转变反应的b通道具有优势,活化自由能垒约为247. 0 kJ/mol-1;S-A_2手性转变反应的a通道具有优势,活化自由能垒约为329. 0 kJ·mol-1。结果表明,Ala与Mn2+的配合物可以很好地保持其手性特征。  相似文献   

14.
使用密度泛函理论的B3LYP方法,采用6-31+G(d,p)基组,研究了水环境下赖氨酸分子的手性转变机制,在MP2/6-31++G(d,p)水平计算了单点能.反应通道研究发现:水环境下赖氨酸分子的手性转变有两个反应通道,一是手性碳的H以水分子为桥梁直接转移至羰基氧上,然后经过几个异构过程实现手性转变;二是羧基内的氢先以水分子为桥梁在羧基内转移,而后手性碳的H以水分子为桥梁转移至羰基氧,再经一系列过程实现手性转变.反应过程的势能面计算表明:最高能垒均来自手性碳的H以水分子为桥转移至羰基氧的过渡态,在第1通道以1H2O和2H2O为桥时的能垒分别为208.1,177.0 k J·mol-1,在第2通道以1H2O和2H2O为桥手性转变反应的能垒分别为199.5,176.2 k J·mol-1,均较单体赖氨酸分子时的能垒大幅降低.结果表明,水分子对赖氨酸手性转变过程中的H转移反应有较好的催化作用.  相似文献   

15.
采用基于密度泛函理论的?B97X-D和M06方法,研究了气相环境下Cu~(2+)催化α-丙氨酸(α-Ala)分子两种稳定构型的手性对映体转变。对于构型1的手性转变反应考察了4个通道(ai,aj,ak和b),ai、aj和ak通道分别是羟基旋转后α-H以氨基氮、铜及与铜配位的羰基氧为桥迁移;b通道是羟基氢向氨基氮迁移后α-H向羰基氧迁移,接着质子从质子化氨基向α-C迁移。对于构型2的手性转变反应考察了α-H以氨基氮为桥迁移的通道。势能面计算表明:对于构型1,aj通道具有优势,决速步骤的内禀能垒为120. 3 kJ·mol~(-1),构型2在决速步骤的内禀能垒为189. 0 kJ·mol~(-1)。结果表明:相对于孤立环境下α-Ala分子的手性转变,气相环境下Cu~(2+)对α-Ala分子的手性转变反应具有较好的催化作用。  相似文献   

16.
采用密度泛函理论的B3LYP方法、微扰理论的MP2方法和自洽反应场(SCRF)理论的smd模型方法,研究了脯氨酸手性转变裸反应机理、水分子的催化作用及水溶剂化效应.结构分析表明:三元环结构过渡态aTS2、五元环结构过渡态aTS2·1H_2O和七元环结构过渡态aTS2·2H_2O的稳定性顺次增加.反应通道研究发现:标题反应有4个通道a,b,c,d.a,b和c通道手性碳上的质子分别以亚氨基为桥、依次以羰基和亚氨基为桥和只以羰基为桥迁移;d通道羧基内质子迁移后,手性碳上的质子再以羰基为桥迁移.势能面计算表明:a通道为优势反应通道,单体气相反应决速步骤吉布斯自由能垒为246.0kJ·mol~(-1);2个水分子的催化使决速步骤自由能垒降为122.6kJ·mol~(-1);2个水分子的催化与水溶剂效应的共同作用,使决速步骤自由能垒降为105.1kJ·mol~(-1).  相似文献   

17.
采用密度泛函理论的B3LYP方法和微扰理论的MP2方法研究了单体半胱氨酸分子手性转变机理及水分子对氢迁移反应的催化作用.根据研究结果,半胱氨酸分子手性转变反应有4个通道:a通道是手性C上的H只以氨基N为桥转移至手性C另一侧;b通道是手性C上的H依次以羰基O和氨基N为桥转移至手性碳另一侧;c通道是手性C上的H只以羰基O为桥转移至手性碳另一侧;d通道是手性C上的H以羟基O为桥转移至手性碳另一侧.势能面计算表明:a通道为优势反应通道,最高能垒254.6kJ·mol~(-1);1个水分子及2个水分子构成的链作为H迁移媒介,使最高能垒降至163.2和126.2kJ·mol~(-1),说明水分子对H迁移反应具有较好的催化作用.  相似文献   

18.
采用量子力学与分子力学组合的ONIOM方法,研究了扶手椅型单壁碳纳米管(SWCNT)孔径对缬氨酸(valine,Val)分子两种构象Val_1和Val_2旋光异构的限域影响。结构分析表明:扶手椅型SWCNT(5,5)的限域作用致Val分子骨架明显形变,同时SWCNT(5,5)也发生了明显形变。势能面研究表明:限域在SWCNT内的Val分子以氨基氮为质子转移桥梁的旋光异构反应通道具有优势;Val_1和Val_2限域在SWCNT(5,5)内,在优势通道上旋光异构决速步骤的内禀能垒分别为340.55和361.13kJ·mol~(-1),限域在SWCNT(6,6)内,在优势通道上旋光异构决速步骤的内禀能垒分别为302.80和293.11kJ·mol~(-1),限域在SWCNT(7,7)内,在优势通道上旋光异构决速步骤的内禀能垒为265.54kJ·mol~(-1)左右。计算结果表明:SWCNT(5,5)的限域作用及其固体溶剂效应对Val分子的旋光异构反应具有显著的阻碍作用,SWCNT(5,5)可以安全地储存光学纯Val。  相似文献   

19.
在MP2/ SMD/6-311++g(3df, 2pd)//WB97X-D/SMD/6-311++G(d, p)理论水平上,研究了水液相环境下羟自由基诱导的苯丙氨酸分子的损伤机理。研究发现,羟自由基(水分子簇)抽取α-氢、β-氢、苯环-氢以及羟自由基与苯环加成均可致苯丙氨酸分子损伤。势能面计算表明,羟自由基(水分子簇)抽取α-氢和β-氢的最低能垒分别为68.4和89.3 kJ·mol-1,羟自由基抽取苯环-氢的最低能垒为111.6 kJ·mol-1,羟自由基加成到苯环不同位点碳的能垒大约在106.5~110.2 kJ·mol-1,羟自由基(水分子簇)抽α-氢和β-氢是显著的放热反应。结果表明,羟自由基(水分子簇)抽取α-氢是苯丙氨酸分子损伤的主要途径。  相似文献   

20.
在MP2/ SMD/6-311++g(3df, 2pd)//WB97X-D/SMD/6-311++G(d, p)理论水平上,研究了水液相环境下羟自由基诱导的苯丙氨酸分子的损伤机理。研究发现,羟自由基(水分子簇)抽取α-氢、β-氢、苯环-氢以及羟自由基与苯环加成均可致苯丙氨酸分子损伤。势能面计算表明,羟自由基(水分子簇)抽取α-氢和β-氢的最低能垒分别为68.4和89.3 kJ·mol-1,羟自由基抽取苯环-氢的最低能垒为111.6 kJ·mol-1,羟自由基加成到苯环不同位点碳的能垒大约在106.5~110.2 kJ·mol-1,羟自由基(水分子簇)抽α-氢和β-氢是显著的放热反应。结果表明,羟自由基(水分子簇)抽取α-氢是苯丙氨酸分子损伤的主要途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号