首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Heteropolyanions of tungstophosphoric acid (PWA) have been successfully hybridized with carbon nanotubes (CNTs) by a severe mechanical milling. The obtained hybrid is electroactive for hydrogen evolution (HE) at potentials as positive as −0.16 V vs. Ag/AgCl in 0.2 M HClO4 aqueous solution and its electrocatalysis is up to the level of Pt/CNTs (20 wt% Pt) for HE, indicating a vigorous alternative to Pt group metals. The HE mechanism of the hybrid was also studied and it was found that the tungsten oxycarbides are the electroactive components for HE.  相似文献   

2.
A hydrogen storage mechanism in single-walled carbon nanotubes.   总被引:3,自引:0,他引:3  
We have carried out systematic calculations for hydrogen-adsorption and -storage mechanism in carbon nanotubes at zero temperature. Hydrogen atoms first adsorb on the tube wall in an arch-type and zigzag-type up to a coverage of theta = 1.0 and are stored in the capillary as a form of H(2) molecule at higher coverages. Hydrogen atoms can be stored dominantly through the tube wall by breaking the C--C midbond, while preserving the wall stability of a nanotube after complete hydrogen insertion, rather than by the capillarity effect through the ends of nanotubes. In the hydrogen-extraction processes, H(2) molecule in the capillary of nanotubes first dissociates and adsorbs onto the inner wall and is further extracted to the outer wall by the flip-out mechanism. Our calculations describe suitably an electrochemical storage process of hydrogen, which is applicable for the secondary hydrogen battery.  相似文献   

3.
Hydrogen is a kind of clean, sustainable and renewable energy carrier. Of the problems to be solved for the utilization of hydrogen energy, how to store and transport hydrogen has been given high priority on the research agenda. Recently, carbon nanotubes (CNTs) were reported to be very promising candidates for hydrogen uptake[1], which may have possibility to satisfy the benchmark set by the US Department of Energy (DOE) Hydrogen Plan for fuel cell powered vehicles: a gravimetric density …  相似文献   

4.
Method for obtaining carbon nanotubes by chemical vapor deposition on metal oxide catalysts produced by the reaction of transition metal nitrates with glycine was considered. The process of synthesis of carbon nanotubes was experimentally studied at various reaction durations, temperatures, and amounts of a catalyst. It was found that the ash content of the product and the content of impurities depend on the amount of a catalyst. A reactor design raising the output capacity of the process for synthesis of carbon nanotubes is suggested.  相似文献   

5.
表面处理作为储氢合金性能改善的有效手段,近年来得到了很好的发展和应用,本文简要介绍了镁基储氢合金表面处理的主要方法及其对合金性能的影响。  相似文献   

6.
A prototype case study is presented that examines the level of hydrogen content in H-SWNTs using the Surface Plasmon Resonance technique. The damping effect and the angular shift in the resonance minimum of an SWNT-gold interface due to the presence of hydrogen is analyzed using a parametric model, which is based on the concept of an effective permittivity. The new approach provides for a non-invasive analysis of the level of hydrogen content in H-SWNTs and is potentially extendable to other carbon-based hydrogen storage materials.  相似文献   

7.
孙小惠  努扎艾提·艾比布  杜虹 《催化学报》2021,42(1):235-243,后插50-后插52,封3
氢气是一种环境友好可再生的清洁能源,电解水无疑是一种很好的制氢方法.然而,电催化分解水析氢受到其缓慢的动力学过程、较低的催化性能和较差的稳定性的限制.为了使整个过程更节能,具有高电流密度和低的过电势的高效电催化剂被广泛研究.非化学计量相硒化钴(Co0.85Se)作为一种重要的金属硫属化合物具有优异的催化性能而广受关注.但是低维的Co0.85Se活性位点少,分散性差,电子传递能力低,导致其电催化剂活性差.多壁碳纳米管(MWCNTs)具有多种电性能,包括金属导电性和电子存储能力等.因此,MWCNTs的特殊结构和高导电性可以有效地促进电子从电催化剂向碳纳米管的转移,实现高效电分解水制氢性能.本文在不使用表面活性剂和模板的情况下,通过一步水热溶剂热法合成弱磁性Co0.85Se纳米片负载碳纳米管电催化剂.采用磁滞回线研究Co0.85Se和MWCNTs/Co0.85Se的磁性能,结果表明其有弱顺磁性,Co0.85Se纳米片之间的空间距离增强导致粒子间偶极相互作用减弱,从而使MWCNTs/Co0.85Se纳米复合材料的矫顽力值增加到158 Oe.随着微晶尺寸的减小和纳米颗粒间距的增大,MWCNTs/Co0.85Se催化剂的比表面积增大,有利于提高其电催化活性.扫描电镜和透射电镜展示出Co0.85Se纳米片分散性较差,且团聚现象严重,而MWCNTs/Co0.85Se纳米复合催化剂显示Co0.85Se纳米片均匀分散在MWCNTs表面,且纳米片尺寸明显减小,有利于Co0.85Se纳米片暴露更多的活性位点.线性扫描伏安曲线测量表明,在酸性溶液中Co0.85Se纳米片在电流密度为10 mA cm?2时,其过电势为319 mV(vs.RHE),30 wt%MWCNTs/Co0.85Se的过电势为266 mV(vs.RHE).Co0.85Se和MWCNTs/Co0.85Se的Tafel斜率分别为92.6和60.5 mV dec?1.此外,MWCNTs/Co0.85Se的电流交换密度(j0)为0.07 mA cm?2.较小的Tafel斜率和高的电流交换密度表明,MWCNTs/Co0.85Se具有良好的反应动力学和快速的质子分离速率.交流阻抗谱表明MWCNTs/Co0.85Se比Co0.85Se电阻更小,电子传输速率更快.电化学活性表面积与双电层在固液界面处的电容测量值成正比.结果显示,30 wt%MWCNTs/Co0.85Se的双电层电容为0.22 mF cm^-2,高于Co0.85Se和15 wt%的rGO/Co0.85Se(0.04 mF cm^-2,0.17 mF cm^-2),这表明较大的电化学活性表面积有利于析氢反应进行.30 wt%MWCNTs/Co0.85Se的循环稳定测试表明其具有较好的稳定性.综上,本文介绍了通过一步水热法合成具有弱磁性的Co0.85Se和MWCNTs/Co0.85Se电催化剂,碳纳米管作为一种高导电性材料被引入Co0.85Se纳米片中以减少Co0.85Se的团聚,使Co0.85Se的活性位点增加,进而提高电催化制氢性能.  相似文献   

8.
The electrochemical hydrogen storage properties of Ni-supported multi-walled carbon nanotube (Ni/MWCNT) electrodes were investigated using charge/discharge (C&D) and cyclic voltammetry (CV) techniques. Nickel NPs were deposited on the MWCNT surface, which was first chemically oxidized by H2SO4 and HNO3 (3:1, v/v). Hydrogen storage was carried out by using the Ni/MWCNT electrode as the working electrode in the electrochemical cell. A set of various current densities were applied to the cell to produce (C&D) cycles, and it became optimum corresponding to 1.5 mA current. According to the electrochemical test results, the highest electrochemical discharge capacity of 1625 mAh g?1 was obtained for the electrode with ratio of 4:1 (MWCNTs to Ni) in the initial cycle, which corresponded to 6.07 wt% H2. The storage capacity was increased and reached to 4909 mAh g?1 (18.34 wt% H2) after 20 cycles, and the electrode maintained the specific capacity as cycling continued. Thus, the Ni/MWCNT electrode displays an excellent cycle stability and a high capacity reversibility. CV measurements also showed that the electrochemical adsorption and desorption amount of hydrogen was increased by Ni loading onto the CNTs and indicated that the electrochemical hydrogen adsorption of the electrode has an activated period.  相似文献   

9.
Following our previous findings that confinement within carbon nanotubes (CNTs) can modify the redox properties of encapsulated iron oxides, we demonstrate here how this can affect the catalytic reactivity of iron catalysts in Fischer-Tropsch synthesis (FTS). The investigation, using in situ XRD under conditions close to the reaction conditions, reveals that the distribution of iron carbide and oxide phases is modulated in the CNT-confined system. The iron species encapsulated inside CNTs prefer to exist in a more reduced state, tending to form more iron carbides under the reaction conditions, which have been recognized to be essential to obtain high FTS activity. The relative ratio of the integral XRD peaks of iron carbide (Fe(x)C(y)) to oxide (FeO) is about 4.7 for the encapsulated iron catalyst in comparison to 2.4 for the iron catalyst dispersed on the outer walls of CNTs under the same conditions. This causes a remarkable modification of the catalytic performance. The yield of C5+ hydrocarbons over the encapsulated iron catalyst is twice that over iron catalyst outside CNTs and more than 6 times that over activated-carbon-supported iron catalyst. The catalytic activity enhancement is attributed to the effect of confinement of the iron catalyst within the CNT channels. As demonstrated by temperature-programmed reduction in H2 and in CO atmospheres, the reducibility of the iron species is significantly improved when they are confined. The ability to modify the redox properties via confinement in CNTs is expected to be of significance for many catalytic reactions, which are highly dependent on the redox state of the active components. Furthermore, diffusion and aggregation of the iron species through the reduction and reaction have been observed, but these are retarded inside CNTs due to the spatial restriction of the channels.  相似文献   

10.
The catalyst system comprised of a heptane solution of magnesiumoctoate-H2O-Tetrabutoxytitanium/diethylaluminumchloride was highly active for ethylene polymerization at a high temperature. High productivity for the catalyst system at a low temperature was achieved by the aging of the catalyst components. The effect of different orders of addition of the catalyst components on productivity was investigated to assume the role of each components in the formation of active species.  相似文献   

11.
Wang  Chaoxiang  Wang  Yajiao  Dang  Yanliu  Jiao  Qingze  Li  Hansheng  Wu  Qin  Zhao  Yun 《Russian Journal of Applied Chemistry》2015,88(10):1723-1727
Russian Journal of Applied Chemistry - A phenoxy-ester Ti based complex of bis[5-methyl-3-trimethylsilyl phenyl salicylate]titanium(IV) dichloride was prepared for olefin polymerization. The...  相似文献   

12.
We have investigated atomic and electronic structures of hydrogen-chemisorbed single-walled carbon nanotubes (SWCNTs) by density functional calculations. We have searched for relative stability of various hydrogen adsorption geometries with coverage. The hydrogenated SWCNTs are stable with coverage of H/C, theta >/= 0.3. The circular cross sections of nanotubes are transformed to polygonal shapes with different symmetries upon hydrogen adsorption. We find that the band gap in carbon nanotubes can be engineered by varying hydrogen coverage, independent of the metallicity of carbon nanotubes. This is explained by the degree of sp(3) hybridization.  相似文献   

13.
Single-walled carbon nanotubes (SWCNTs) were treated with sulfuric acid at 300 °C to synthesize sulfonated SWCNTs (s-SWCNTs), which were characterized by electron microscopy, infrared, Raman and X-ray photoelectron spectroscopy, and thermo analysis. Compared with activated carbon, more sulfonic acid groups can be introduced onto the surfaces of SWCNTs. The high degree (∼20 wt%) of surface sulfonation led to hydrophilic sidewalls that allows the SWCNTs to be uniformly dispersed in water and organic solvents. The high surface acidity of s-SWCNTs was demonstrated by NH3 temperature-programmed desorption technique and tested by an acetic acid esterification reaction catalyzed by s-SWCNTs. The results show that the water-dispersive s-SWCNTs are an excellent solid acid catalyst and demonstrate the potential of SWCNTs in catalysis applications.  相似文献   

14.
Titanate nanotubes and their derivates, Pd-loaded and Co2+, Zn2+, Cu2+, and Ag+ ion-exchanged titanate nanotubes, were respectively prepared and characterized by XRD, HR-TEM, and EDS. Their hydrogen storage properties were investigated, and the results revealed that the derivated titanate nanotubes had better hydrogen storage characters. Pd-loaded titanate nanotubes exhibited the highest hydrogen storage capacity of 1.03 wt%, which is three times higher than that of raw titanate nanotubes. The ion-exchanged titanate nanotubes also showed enhanced capacity. Especially, Co-TiNT reached a storage capacity of 0.80 wt%. The reason why hydrogen storage capacity was enhanced in titanate nanotubes was a pilot study. These results indicated that oxide nanotubes provided some new opportunities for hydrogen energy applications.  相似文献   

15.
The direct synthesis of LiAlH(4) from commercially available LiH and Al powders in the presence of TiCl(3) and Me(2)O has been achieved for the first time. The effects of TiCl(3) loadings (Ti/Al = 0, 0.01, 0.05, 0.2, 0.5, 1.0 and 2.0%) and various other additives (TiCl(3)/Al(2)O(3), metallic Ti, Nb(2)O(5), and NbCl(5)) on the formation and stability of LiAlH(4) have been systematically investigated. The yield of LiAlH(4) initially increases, and then decreases, with increasing TiCl(3) loadings. LiH + Al → LiAlH(4) yields above 95% were obtained when the molar ratios of Ti/Al were 0.05 and 0.2%. In the presence of a very tiny amount of TiCl(3) (Ti/Al = 0.01%), LiAlH(4) is still generated, but the yield is lower. In the complete absence of TiCl(3), LiAlH(4) does not form. Addition of metallic Ti, Nb(2)O(5), and NbCl(5) to commercial LiH and Al does not result in the formation of LiAlH(4). Preliminary tests show that TiCl(3)-doped LiAlH(4) can be cycled, making it a suitable candidate for hydrogen storage.  相似文献   

16.
17.
This paper studies the impact of structure of cobalt catalysts supported on carbon nanotubes(CNT) on the activity and product selectivity of Fischer-Tropsch synthesis(FTS) reaction.Three types of CNT with average pore sizes of 5,11,and 17 nm were used as the supports.The catalysts were prepared by selectively impregnating cobalt nanoparticles either inside or outside CNT.The TPR results indicated that the catalyst with Co particles inside CNT was easier to be reduced than those outside CNT,and the reducibility of cobalt oxide particles inside the CNT decreased with the cobalt oxide particle size increasing.The activity of the catalyst with Co inside CNT was higher than that of catalysts with Co particles outside CNT.Smaller CNT pore size also appears to enhance the catalyst reduction and FTS activity due to the little interaction between cobalt oxide with carbon and the enhanced electron shift on the non-planar carbon tube surface.  相似文献   

18.
Biosensors based on carbon nanotubes   总被引:6,自引:0,他引:6  
Carbon nanotubes (CNTs) exhibit a unique combination of excellent mechanical, electrical and electrochemical properties, which has stimulated increasing interest in the application of CNTs as components in (bio)sensors. This review highlights various design methodologies for CNT-based biosensors and their employment for the detection of a number of biomolecules. In addition, recent developments in the fields of CNT-based chemiresistors and chemically sensitive field-effect transistors are presented. After a critical discussion of the factors that currently limit the practical use of CNT-based biosensors, the review concludes with an outline of potential future applications for CNTs in biology and medicine.   相似文献   

19.
Combined ab initio and grand canonical Monte Carlo simulations have been performed to investigate the dependence of hydrogen storage in single-walled carbon nanotubes (SWCNTs) on both tube curvature and chirality. The ab initio calculations at the density functional level of theory can provide useful information about the nature of hydrogen adsorption in SWCNT selected sites and the binding under different curvatures and chiralities of the tube walls. Further to this, the grand canonical Monte Carlo atomistic simulation technique can model large-scale nanotube systems with different curvature and chiralities and reproduce their storage capacity by calculating the weight percentage of the adsorbed material (gravimetric density) under thermodynamic conditions of interest. The author's results have shown that with both computational techniques, the nanotube's curvature plays an important role in the storage process while the chirality of the tube plays none.  相似文献   

20.
The process of rolling a monolayer of bulk crystal with biperiodical planar lattice to the nanotube was analyzed. It was shown by an example of the carbon nanotubes how the tube symmetry can be revealed through the analysis of symmetry of graphene layers (the layer group with a hexagonal planar lattice) and its changes at the rolling to form the tube. The developed approach can be used to analyze the symmetry of any nanotube. A computer program we developed is discussed that allows to determine the nanotube symmetry using the data on the symmetry and coordinates of the atoms in the nanolayer and get the coordinates of the atoms in the unit cell of the nanotube which can be used for the further quantum-chemical calculations. The method and results of ab initio calculations of the titanium dioxide monolayer stability in the LCAO basis optimized for the bulk crystal, using the hybrid exchange-correlation potential PBE0 are presented. Symmetry properties of nanotubes obtained by rolling the three- and six-plane monolayers (101) and (001) of anatase are discussed. Atomic and electronic structure of TiO2 nanotubes found by geometry optimization is analyzed. It is shown that titanium dioxide nanotubes based on the three-plane monolayers with hexagonal and square lattice are approximately of the same stability. The data on the stability of nanotubes are essential for the synthesis of new nanomaterials based on titanium dioxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号