首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic and electrical properties of amorphous Mn-Y, Mn-Zr, and Mn-Nb alloys have been investigated. All these alloys have a temperature-dependent susceptibility which is well fitted by a Curie-Weiss law. This implies the existence of localized magnetic moments associated with the Mn atoms. In addition, amorphous Mn-Y alloys exhibit spin-glass characteristics at low temperature. The experimental results of the electrical resistivity show that the temperature coefficient of resistivity (TCR) of both Mn-Y and Mn-Zr are negative, while Mn-Nb has a positive TCR. On the other hand, the resistivity-temperature curves of Mn-Zr and Mn-Nb have nearly the same tendency but are different from that of Mn-Y.  相似文献   

2.
The magnetic properties of existing amorphous iron based materials, i.e., Fe--metalloid, Fe--early transition metals and Fe--rare earth alloys, are briefly discussed for some representative alloys. The spin orientation of amorphous Fe--metalloid alloys has been determined by the angular dependence of hyperfine interactions. It is shown that in iron--early transition metals ferromagnetic order is not long-ranged, but determined by magnetic clusters. The magnetic hyperfine field distributions of Fe-rich iron--early transition metals consist of a high and a low field tail. The magnetic structure has been investigated for two representative Fe--RE (RE = Er, Ce) amorphous alloys. For the first time, the magnetic coupling phenomenon in amorphous/crystalline multilayers has been discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Magnetic susceptibility and electrical resistivity measurements were performed (Pd100?xCox)80P20 alloys where 15 < x < 50. The magnetic properties show that these alloys undergo a ferromagnetic transition between 272 and 399 K as the cobalt concentration increases from 15 to 50 atomic %. Below 20 atomic % Co the short-range exchange interactions which produce the ferromagnetism are unable to establish a long-range magnetic order and a peak in the magnetization shows up at the lowest temperature range under an applied field of 6.0 kOe. The electrical resistivity of these alloys has been measured from 4.2 K up to the vinicity of the melting point (900 K). The electrical resistivity data could be interpreted by the coexistence fo a Kondo-like minimum and ferromagnetism. The minimum becomes less important as the transition metal concentration increases. The coefficients of In T and T2 become smaller and concentration dependent. The spin ordering in such alloys can be simulated as either the ordering due to an applied “external field” or as an increase in “internal fields”. These are due to an increase in transition metal concentration. The negative magnetoresistivity is a strong indication of the existence of localized moment.  相似文献   

4.
Summary A quadratic composition dependence of the electrical resistivity of amorphous transition metal alloys has been investigated at room temperature. A very good agreement between the theoretical and the observed values has been obtained in the case of NixZr1−x and CuxZr1−x for all compositions. The thermoelectric power was then correlated with the electrical resistivity satisfactorily for the CuxZr1−x and NixZr1−x To speed up publication, the authors of this paper have agreed to not receive the proofs for correction.  相似文献   

5.
Magnetization, NMR and coercive force measurements were performed on amorphous Ni1?cPc alloys for concentration ranging between 0.15 and 0.25. The experimental results show that the magnetism is not of the same nature below and above some critical concentration c0 which determines the concentration ranges: the first one (0.15 < c < 0.18) presents the characters of a weak homogeneous ferromagnetism, while inhomogeneities dominate the magnetic properties of the second one (0.18 < c < 0.25).  相似文献   

6.
We report on the growth and characterization of delta-doped amorphous Ge:Mn diluted magnetic semiconductor thin films on GaAs (0 0 1) substrates. The fabricated samples exhibit different magnetic behaviors, depending on the Mn doping concentration. The Curie temperature was found to be dependent on both the Mn doping concentration and spacing between the doping layers. A sharp drop in magnetization and rise in resistivity are observed at low temperature in samples with high Mn doping concentrations, which is also accompanied by a negative thermal remanent magnetization (TRM) in the higher temperature range. The temperature at which the magnetization starts to drop and the negative TRM appears show a correlation with the Mn doping concentration. The experimental results are discussed based on the formation of ferromagnetic regions at high temperature and antiferromagnetic coupling between these regions at low temperature.  相似文献   

7.
The magnetic and mechanical properties of amorphous Fe100−xYx alloys (20 ≤ x ≤ 60) fabricated by rapid quenching have been measured. The dependence of the density, Young's modulus and magnetic moment per Fe atom on x shows a break point between x = 30 and 40, accompanied by a drastic change in the X-ray diffraction pattern. The spontaneous volume magnetostriction as well as the forced volume magnetostriction are a maximum at x = 20 and decrease rapidly with increasing x. The variation of the magnetic and mechanical properties with x is explained by a change of the local atomic arrangement in the amorphous state, reflecting the structure of corresponding crystalline compounds.  相似文献   

8.
Measurements of electrical resistivity, magnetoresistance and Hall effect on amorphous Ni100–x Ti x alloys withx=39, 43, 60, 65, 70, and 76 are presented. The resistivity at 4.2 K is in the range 210 cm to 325 cm. The Hall coefficient turns out to be negative for low Ti contents and positive for high Ti contents with values around –6×10–11 m3/As and +7×10–11 m3/As, respectively. At low temperatures, the temperature and magnetic field dependences of the quantities measured are analysed and discussed in terms of weak localisation and electron-electron interaction effects.  相似文献   

9.
The magnetic properties of various amorphous alloys of the type R1-xFex (R = Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu) have been determined in the concentration range 0.3 ? x ? 0.5. With the exception of the Gd and Lu alloys pronounced thermomagnetic history effects were observed in the temperature dependence of the magnetization. These effects are due to a strong temperature dependence of the coercive force (Hc) which is found to obey an exponential law of the form Hc ∞ exp(-αT). 57Fe Mössbauer spectra were obtained on the alloys of a composition close to 40 at% Fe. From the combined results of the Mössbauer spectroscopy and magnetic measurements it is derived that the Fe moment decreases if one passes through the rare-earth series. It is postulated that this decrease is due to small differences in the compositional short-range order in the amorphous alloys caused by the heat of mixing becoming more negative in the same sense.  相似文献   

10.
The structural analysis and investigation of magnetic properties were carried out on rapidly quenched Fe100−xSmx (10.5 x 80) alloys. Amorphous alloys are fabricated in a wide composition range from x = 17 to 72.5. After heating the amorphous alloys up to 900 K, they transform into metastable phase I (Tc = 465 K)+ -Fe (x < 20), metastable phase II (Tc = 555 K)+-Fe (20 x 33.3) and Fe2Sm+Sm (x40). The composition dependence of Curie temperature and magnetization is found to be similar to that of amorphous Fe-(Nd, Pr) alloys. A maximum coercive force of about 1.1 kOe at 300 K and 12 kOe at 77 K is obtained in the x = 40 alloy. The rapid decrease in coercive force with raising temperature can be explained by the wall pinning model proposed by Gaunt. The pronounced composition dependence of these magnetic properties for the amorphous Fe-Sm alloys can be considered to be caused by the change in the short-range atomic order with Sm concentration on the basis of the results of X-ray structural analysis.  相似文献   

11.
The changes in the electron properties of amorphous alloys of the iron-boron system under crystallization have been studied by the angular distribution of annihilation photons, the temperature dependence of thermal emf, and Mössbauer spectroscopy. The obtained qualitative estimates allow us to draw conclusions about some features of metallic bond in the amorphous crystalline state, in particular, to propose that positron annihilation is realized at the d electron shells and valence electrons of the crystalline phase nuclei.  相似文献   

12.
The influence of severe plastic deformation in a Bridgman cell on the magnetic properties of amorphous alloys of metal-metalloid type, Ni44Fe29Co15Si2B10, Fe74Si13B9Nb3Cu1, Fe57.5Ni25B17.5, Fe49.5Ni33B17.5, and Fe70Cr15B15, obtained by melt spinning, has been investigated. It is found that the saturation magnetization significantly changes (increases or decreases), depending on the number of ferromagnetic and antiferromagnetic components in the alloy. It is suggested that very high shear stress causes internal phase decomposition in the amorphous matrix into nanoscale regions, enriched or depleted with ferromagnetic components.  相似文献   

13.
The effect of thermal treatment in combination with an external magnetic field and/or elastic stress on the magnetic characteristics of amorphous metal alloys of the 2NSR type is studied. The complex behavior of the magnetization and coercivity values in dependence on the length of annealing at temperatures below crystallization is described. It is assumed that the observed changes in the macroscopic magnetic characteristics are associated with the formation of clusters with different degrees of exchange interaction.  相似文献   

14.
Amorphous GeSeFe films prepared by r.f. sputtering have shown paramagnetic, and ferromagnetic properties for the films with low and high Fe content, respectively. The temperature dependence of the electrical conductivity has indicated the variable range hopping conduction for the paramagnetic films and the metallic conduction for the ferromagnetic films. The films with intermediate Fe content have behaved intermediate between semiconductive and metallic conduction. These films are likely to be antiferromagnetic.  相似文献   

15.
16.
NANOPERM-type FeMoCuB alloys are studied using magnetic and Mössbauer measurements in the as-prepared amorphous state. It is shown that the Fe76Mo8Cu1B15 (A) and Fe74Mo8Cu1B17 (B) alloys exhibit the magnetic dipole and electrical quadrupole interactions well detected in the room-temperature Mössbauer spectra. The thermomagnetic measurements above the room temperature indicate a vanishing of the magnetic interactions at approximately 310 K (A) and at 340 K (B), respectively. The low-temperature DC magnetic measurements show an anomaly around 200 K which is also a boundary at which zero-field Mössbauer measurements of both samples reflect the gradual “vanishing” of the electrical quadrupole interactions and appearance of another magnetically ordered component. The Mössbauer measurements in the field of 4 MA/m yield a survival of quadrupole and an enhancement of magnetic dipole interactions.  相似文献   

17.
A series of the amorphous Gd75-55Al25-5Fe0-40 alloy ribbons were prepared by melt spinning.The structure,magnetic properties and magnetocaloric effect(MCE) of these alloys were investigated.The prepared samples have shown the characteristics of a second-order phase transition with zero hysteresis loss and the Tc can be tuned by changing the Fe contents.For the different compositions,the magnetic entropy change(--Sm) for a field change of 0-5 T reached a maximum value of 7.14 J kg-1 K-1 in the Gd70Al20Fe10 a...  相似文献   

18.
Hysteresis loop and ac susceptibility measurements were performed on three series of amorphous alloys: (AwB1-w)75P16B6Al3, where (A, B) are (Fe, Ni), (Co, Ni) and (Fe, Mn). Upon cooling, low w alloys undergo paramagne t to spin glass transitions. Alloys with higher w first experience a Curie transition to a ferromagnetic state, and then a spin freezing transition to a spin glass state. the T dependence of the width of the ac hysteresis loop is used to determine the spin freezing transition temperature. A magnetic phase diagram is presented for each alloy series and the value of w required for ferromagnetism, wC, is determined. When measured in the presence of small constant fields, the ac susceptibility of alloys with w just above wC has maxima near both transition temperatures. The field and temperature dependences of the peaks are explained by scaling arguments, used to determine the critical exponent δ for the Curie transition, and suggest that a similar scaling law holds for the ferromagnet to spin glass transition.  相似文献   

19.
The different diffusion processes that occur in electrodeposited Co-P amorphous alloys when they are subjected to magnetic annealing at different temperatures are studied by Coercive field measurements. Different processes are identified with different activation energies: 0.19 eV (stress relaxation): 0.75 eV (directional order); 2.9 eV (crystallization process). The low value of the activation energy for the first mechanism is identified with the diffusion of H, and that of the second with the diffusion of P.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号