首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
An s-subset of codewords of a binary code X is said to be \((s,\,\ell )\) -bad in X if the code X contains a subset of \(\ell \) other codewords such that the conjunction of the \(\ell \) codewords is covered by the disjunctive sum of the s codewords. Otherwise, the s-subset of codewords of X is called \((s,\,\ell )\) -good in X. A binary code X is said to be a cover-free (CF) \((s,\,\ell )\)-code if the code X does not contain \((s,\,\ell )\)-bad subsets. In this paper, we introduce a natural probabilistic generalization of CF \((s,\,\ell )\)-codes, namely: a binary code X is said to be an almost CF \((s,\,\ell )\)-code if the relative number of its \((s,\,\ell )\)-good s-subsets is close to 1. We develop a random coding method based on the ensemble of binary constant weight codes to obtain lower bounds on the capacity of such codes. Our main result shows that the capacity for almost CF \((s,\,\ell )\)-codes is essentially greater than the rate for ordinary CF \((s,\,\ell )\)-codes.  相似文献   

2.
Linear codes with complementary duals (abbreviated LCD) are linear codes whose intersection with their dual is trivial. When they are binary, they play an important role in armoring implementations against side-channel attacks and fault injection attacks. Non-binary LCD codes in characteristic 2 can be transformed into binary LCD codes by expansion. On the other hand, being optimal codes, maximum distance separable codes (abbreviated MDS) are of much interest from many viewpoints due to their theoretical and practical properties. However, little work has been done on LCD MDS codes. In particular, determining the existence of q-ary [nk] LCD MDS codes for various lengths n and dimensions k is a basic and interesting problem. In this paper, we firstly study the problem of the existence of q-ary [nk] LCD MDS codes and solve it for the Euclidean case. More specifically, we show that for \(q>3\) there exists a q-ary [nk] Euclidean LCD MDS code, where \(0\le k \le n\le q+1\), or, \(q=2^{m}\), \(n=q+2\) and \(k= 3 \text { or } q-1\). Secondly, we investigate several constructions of new Euclidean and Hermitian LCD MDS codes. Our main techniques in constructing Euclidean and Hermitian LCD MDS codes use some linear codes with small dimension or codimension, self-orthogonal codes and generalized Reed-Solomon codes.  相似文献   

3.
For a large class of finite dimensional inner product spaces V, over division \(*\)-rings F, we consider definable relations on the subspace lattice \(\mathsf{L}(V)\) of V, endowed with the operation of taking orthogonals. In particular, we establish translations between the relevant first order languages, in order to associate these relations with definable and invariant relations on F—focussing on the quantification type of defining formulas. As an intermediate structure we consider the \(*\)-ring \(\mathsf{R}(V)\) of endomorphisms of V, thereby identifying \(\mathsf{L}(V)\) with the lattice of right ideals of \(\mathsf{R}(V)\), with the induced involution. As an application, model completeness of F is shown to imply that of \(\mathsf{R}(V)\) and \(\mathsf{L}(V)\).  相似文献   

4.
The concept of the inverse along an element was introduced by Mary in 2011. Later, Zhu et al. introduced the one-sided inverse along an element. In this paper, we first give a new existence criterion for the one-sided inverse along a product and characterize the existence of Moore–Penrose inverse by means of one-sided invertibility of certain element in a ring. In addition, we show that \(a\in S^{\dagger }\bigcap S^{\#}\) if and only if \((a^{*}a)^{k}\) is invertible along a if and only if \((aa^{*})^{k}\) is invertible along a in a \(*\)-monoid S, where k is an arbitrary given positive integer. Finally, we prove that the inverse of a along \(aa^{*}\) coincides with the core inverse of a under the condition \(a\in S^{\{1,4\}}\) in a \(*\)-monoid S.  相似文献   

5.
In this paper, s-\({\text {PD}}\)-sets of minimum size \(s+1\) for partial permutation decoding for the binary linear Hadamard code \(H_m\) of length \(2^m\), for all \(m\ge 4\) and \(2 \le s \le \lfloor {\frac{2^m}{1+m}}\rfloor -1\), are constructed. Moreover, recursive constructions to obtain s-\({\text {PD}}\)-sets of size \(l\ge s+1\) for \(H_{m+1}\) of length \(2^{m+1}\), from an s-\({\text {PD}}\)-set of the same size for \(H_m\), are also described. These results are generalized to find s-\({\text {PD}}\)-sets for the \({\mathbb {Z}}_4\)-linear Hadamard codes \(H_{\gamma , \delta }\) of length \(2^m\), \(m=\gamma +2\delta -1\), which are binary Hadamard codes (not necessarily linear) obtained as the Gray map image of quaternary linear codes of type \(2^\gamma 4^\delta \). Specifically, s-PD-sets of minimum size \(s+1\) for \(H_{\gamma , \delta }\), for all \(\delta \ge 3\) and \(2\le s \le \lfloor {\frac{2^{2\delta -2}}{\delta }}\rfloor -1\), are constructed and recursive constructions are described.  相似文献   

6.
The concept of pattern arises in many applications comprising experimental trials with two or more possible outcomes in each trial. A binary scan of type r / k is a special pattern referring to success–failure strings of fixed length k that contain at least r-successes, where rk are positive integers with \(r\le k\). The multiple scan statistic \(W_{t,k,r}\) is defined as the enumerating random variable for the overlapping moving windows occurring until trial t which include a scan of type r / k. In the present work, we consider a sequence of independent binary trials with not necessarily equal probabilities of success and develop upper bounds for the probability of the event that the multiple scan statistic will perform a jump from \(\ell \) to \(\ell +1\) (where \(\ell \) is a nonnegative integer) in a finite time horizon.  相似文献   

7.
Let \({\mathbb {F}}_q\) be a finite field with q elements such that \(l^v||(q^t-1)\) and \(\gcd (l,q(q-1))=1\), where lt are primes and v is a positive integer. In this paper, we give all primitive idempotents in a ring \(\mathbb F_q[x]/\langle x^{l^m}-a\rangle \) for \(a\in {\mathbb {F}}_q^*\). Specially for \(t=2\), we give the weight distributions of all irreducible constacyclic codes and their dual codes of length \(l^m\) over \({\mathbb {F}}_q\).  相似文献   

8.
Let \(n \ge 2\) be a fixed integer, R be a noncommutative n!-torsion free ring and I be any non zero ideal of R. In this paper we have proved the following results; (i) If R is a prime ring and there exists a symmetric skew n-derivation \(D: R^n \rightarrow R\) associated with the automorphism \(\sigma \) on R,  such that the trace function \(\delta : R \rightarrow R \) of D satisfies \([\delta (x), \sigma (x)] =0\), for all \(x\in I,\) then \(D=0;\,\)(ii) If R is a semi prime ring and the trace function \(\delta ,\) commuting on I,  satisfies \([\delta (x), \sigma (x)]\in Z\), for all \(x \in I,\) then \([\delta (x), \sigma (x)] = 0 \), for all \(x \in I.\) Moreover, we have proved some annihilating conditions for algebraic identity involving multiplicative(generalized) derivation.  相似文献   

9.
A linear complementary-dual (LCD) code C is a linear code whose dual code \(C^{\perp }\) satisfies \(C \cap C^{\perp }=\{0\}\). In this work we characterize some classes of LCD q-ary \((\lambda , l)\)-quasi-twisted (QT) codes of length \(n=ml\) with \((m,q)=1\), \(\lambda \in F_{q} \setminus \{0\}\) and \(\lambda \ne \lambda ^{-1}\). We show that every \((\lambda ,l)\)-QT code C of length \(n=ml\) with \(dim(C)<m\) or \(dim(C^{\perp })<m\) is an LCD code. A sufficient condition for r-generator QT codes is provided under which they are LCD. We show that every maximal 1-generator \((\lambda ,l)\)-QT code of length \(n=ml\) with \(l>2\) is either an LCD code or a self-orthogonal code and a sufficient condition for this family of codes is given under which such a code C is LCD. Also it is shown that every maximal 1-generator \((\lambda ,2)\)-QT code is LCD. Several good and optimal LCD QT codes are presented.  相似文献   

10.
Cellular automata are discrete dynamical systems that consist of patterns of symbols on a grid, which change according to a locally determined transition rule. In this paper, we will consider cellular automata that arise from polynomial transition rules, where the symbols are integers modulo some prime p. We consider the asymptotic behavior of the line complexity sequence \(a_T(k)\), which counts, for each k, the number of coefficient strings of length k that occur in the automaton. We begin with the modulo 2 case. For a polynomial \(T(x)=c_0+c_1x+\dots +c_nx^n\) with \(c_0,c_n\ne ~0\), we construct odd and even parts of the polynomial from the strings \(0c_1c_3c_5\cdots c_{1+2\lfloor (n-1)/2\rfloor }\) and \(c_0c_2c_4\cdots c_{2\lfloor n/2\rfloor }\), respectively. We prove that \(a_T(k)\) satisfies recursions of a specific form if the odd and even parts of T are relatively prime. We also define the order of such a recursion and show that the property of “having a recursion of some order” is preserved when the transition rule is raised to a positive integer power. Extending to a more general setting, we consider an abstract generating function \(\phi (z)=\sum _{k=1}^\infty \alpha (k)z^k\) which satisfies a functional equation relating \(\phi (z)\) and \(\phi (z^p)\). We show that there is a continuous, piecewise quadratic function f on [1 / p, 1] for which \(\lim _{k\rightarrow \infty }(\alpha (k)/k^2-~f(p^{-\langle \log _p k\rangle })) = 0\) (here \(\langle y\rangle =y-\lfloor y\rfloor \)). We use this result to show that for certain positive integer sequences \(s_k(x)\rightarrow \infty \) with a parameter \(x\in [1/p,1]\), the ratio \(\alpha (s_k(x))/s_k(x)^2\) tends to f(x), and that the limit superior and inferior of \(\alpha (k)/k^2\) are given by the extremal values of f.  相似文献   

11.
We study generalizations of the classical Bernstein operators on the polynomial spaces \(\mathbb {P}_{n}[a,b]\), where instead of fixing \(\mathbf {1}\) and x, we reproduce exactly \(\mathbf {1}\) and a polynomial \(f_1\), strictly increasing on [ab]. We prove that for sufficiently large n, there always exist generalized Bernstein operators fixing \(\mathbf {1}\) and \(f_1\). These operators are defined by non-decreasing sequences of nodes precisely when \(f_1^\prime > 0\) on (ab), but even if \(f_1^\prime \) vanishes somewhere inside (ab), they converge to the identity.  相似文献   

12.
Any commutative, cancellative semigroup S with 0 equipped with a uniformity can be embedded in a topological group \(\widetilde{S}\). We introduce the notion of semigroup symmetry T which enables us to turn \(\widetilde{S}\) into an involutive group. In Theorem 2.8 we prove that if S is 2-torsion-free and T is 2-divisible then the decomposition of elements of \(\widetilde{S}\) into a sum of elements of the symmetric subgroup \(\widetilde{S}_{s}\) and the asymmetric subgroup \(\widetilde{S}_{a}\) is polar. In Theorem 3.7 we give conditions under which a topological group \(\widetilde{S}\) is a topological direct sum of its symmetric subgroup \(\widetilde{S}_{s}\) and its asymmetric subgroup \(\widetilde{S}_{a}\). Theorem 2.8 and Theorem 3.7 are designed to be useful tools in studying Minkowski–Rådström–Hörmander spaces (and related topological groups \(\widetilde{S}\)), which are natural extensions of semigroups of bounded closed convex subsets of real Hausdorff topological vector spaces.  相似文献   

13.
Let \(A=U|A|\) be the polar decomposition of A on a complex Hilbert space \({\mathscr {H}}\) and \(0<s,t\). Then \({\widetilde{A}}_{s, t}=|A|^sU|A|^t\) and \({\widetilde{A}}_{s, t}^{(*)}=|A^*|^sU|A^*|^t\) are called the generalized Aluthge transformation and generalized \(*\)-Aluthge transformation of A, respectively. A pair (AB) of operators is said to have the Fuglede–Putnam property (breifly, the FP-property) if \(AX=XB\) implies \(A^*X=XB^*\) for every operator X. We prove that if (AB) has the FP-property, then \(({\widetilde{A}}_{s, t},{\widetilde{B}}_{s, t})\) and \((({\widetilde{A}}_{s, t})^{*},({\widetilde{B}}_{s, t})^{*})\) has the FP-property for every \(s,t>0\) with \(s+t=1\). Also, we prove that \(({\widetilde{A}}_{s, t},{\widetilde{B}}_{s, t})\) has the FP-property if and only if \((({\widetilde{A}}_{s, t})^{*},({\widetilde{B}}_{s, t})^{*})\) has the FP-property, where AB are invertible and \( 0 < s, t \) with \( s + t =1\). Moreover, we prove that if \(0 < s, t\) and \({\widetilde{A}}_{s, t}\) is positive and invertible, then \(\left\| {\widetilde{A}}_{s, t}X-X{\widetilde{A}}_{s, t}\right\| \le \left\| A\right\| ^{2t}\left\| ({\widetilde{A}}_{s, t})^{-1}\right\| \left\| X\right\| \) for every operator X. Also, if \( 0 <s, t\) and X is positive, then \(\left\| |{\widetilde{A}}_{s, t}|^{2r} X-X|{\widetilde{A}}_{s, t}|^{2r}\right\| \le \frac{1}{2}\left\| |A|\right\| ^{2r}\left\| X\right\| \) for every \(r>0\).  相似文献   

14.
It has become common knowledge that constructing q-ary quantum MDS codes with minimum distance bigger than \(q/2+1\) is significantly more difficult than constructing those with minimum distance less than or equal to \(q/2+1\). Despite of various constructions of q-ary quantum MDS codes, all known q-ary quantum MDS codes have minimum distance bounded by \(q/2+1\) except for some lengths. The purpose of the current paper is to provide some new q-ary quantum MDS codes with minimum distance bigger than \(q/2+1\). In this paper, we provide several classes of quantum MDS codes with minimum distance bigger than \(q/2+1\). For instance, some examples in these classes include q-ary \([n,n-2k, k+1]\)-quantum MDS codes for cases: (i) \(q\equiv -1\bmod {5}, n=(q^2+4)/5\) and \(1\le k\le (3q-2)/5\); (ii) \(q\equiv -1\bmod {7}, n=(q^2+6)/7\) and \(1\le k\le (4q-3)/7\); (iii) \(2|q, q\equiv -1\bmod {3}, n=2(q^2-1)/3\) and \(1\le k\le (2q-1)/3\); and (iv) \(2|q, q\equiv -1\bmod {5}, n=2(q^2-1)/5\) and \(1\le k\le (3q-2)/5\).  相似文献   

15.
Let \(\mathbb {F}_{p^m}\) be a finite field of cardinality \(p^m\), where p is a prime, and kN be any positive integers. We denote \(R_k=F_{p^m}[u]/\langle u^k\rangle =F_{p^m}+uF_{p^m}+\cdots +u^{k-1}F_{p^m}\) (\(u^k=0\)) and \(\lambda =a_0+a_1u+\cdots +a_{k-1}u^{k-1}\) where \(a_0, a_1,\ldots , a_{k-1}\in F_{p^m}\) satisfying \(a_0\ne 0\) and \(a_1=1\). Let r be a positive integer satisfying \(p^{r-1}+1\le k\le p^r\). First we define a Gray map from \(R_k\) to \(F_{p^m}^{p^r}\), then prove that the Gray image of any linear \(\lambda \)-constacyclic code over \(R_k\) of length N is a distance preserving linear \(a_0^{p^r}\)-constacyclic code over \(F_{p^m}\) of length \(p^rN\). Furthermore, the generator polynomials for each linear \(\lambda \)-constacyclic code over \(R_k\) of length N and its Gray image are given respectively. Finally, some optimal constacyclic codes over \(F_{3}\) and \(F_{5}\) are constructed.  相似文献   

16.
We introduce a new generalization of Alan Day’s doubling construction. For ordered sets \(\mathcal {L}\) and \(\mathcal {K}\) and a subset \(E \subseteq \ \leq _{\mathcal {L}}\) we define the ordered set \(\mathcal {L} \star _{E} \mathcal {K}\) arising from inflation of \(\mathcal {L}\) along E by \(\mathcal {K}\). Under the restriction that \(\mathcal {L}\) and \(\mathcal {K}\) are finite lattices, we find those subsets \(E \subseteq \ \leq _{\mathcal {L}}\) such that the ordered set \(\mathcal {L} \star _{E} \mathcal {K}\) is a lattice. Finite lattices that can be constructed in this way are classified in terms of their congruence lattices.A finite lattice is binary cut-through codable if and only if there exists a 0?1 spanning chain \(\left \{\theta _{i}\colon 0 \leq i \leq n \right \}\) in \(Con(\mathcal {L})\) such that the cardinality of the largest block of ?? i /?? i?1 is 2 for every i with 1≤in. These are exactly the lattices that can be constructed by inflation from the 1-element lattice using only the 2-element lattice. We investigate the structure of binary cut-through codable lattices and describe an infinite class of lattices that generate binary cut-through codable varieties.  相似文献   

17.
This work deals with the solvability near the characteristic set Σ = {0} × S 1 of operators of the form \({L=\partial/\partial t + (x^na(x) + ix^mb(x))\partial/\partial x}\), \({b\not\equiv0}\) and a(0) ≠ 0, defined on \({\Omega_\epsilon=(-\epsilon,\epsilon)\times S^1}\), \({\epsilon >0 }\), where a and b are real-valued smooth functions in \({(-\epsilon,\epsilon)}\) and m ≥ 2n. It is shown that given f belonging to a subspace of finite codimension of \({C^\infty(\Omega_\epsilon)}\) there is a solution \({u\in L^\infty}\) of the equation Lu = f in a neighborhood of Σ; moreover, the L regularity is sharp.  相似文献   

18.
In this paper, we study \(\lambda \)-constacyclic codes over the ring \(R=\mathbb {Z}_4+u\mathbb {Z}_4\) where \(u^{2}=1\), for \(\lambda =3+2u\) and \(2+3u\). Two new Gray maps from R to \(\mathbb {Z}_4^{3}\) are defined with the goal of obtaining new linear codes over \(\mathbb {Z}_4\). The Gray images of \(\lambda \)-constacyclic codes over R are determined. We then conducted a computer search and obtained many \(\lambda \)-constacyclic codes over R whose \(\mathbb {Z}_4\)-images have better parameters than currently best-known linear codes over \(\mathbb {Z}_4\).  相似文献   

19.
We give a sharp comparison between the spectra of two Riemannian manifolds (Yg) and \((X,g_0)\) under the following assumptions: \((X,g_0)\) has bounded geometry, (Yg) admits a continuous Gromov–Hausdorff \(\varepsilon \)-approximation onto \((X,g_0)\) of non zero absolute degree, and the volume of (Yg) is almost smaller than the volume of \((X,g_0)\). These assumptions imply no restrictions on the local topology or geometry of (Yg) in particular no curvature assumption is supposed or inferred.  相似文献   

20.
The group of bisections of groupoids plays an important role in the study of Lie groupoids. In this paper another construction is introduced. Indeed, for a topological groupoid G, the set of all continuous self-maps f on G such that (xf(x)) is a composable pair for every \(x\in G\), is denoted by \(S_G\). We show that \(S_G\) by a natural binary operation is a monoid. \(S_G(\alpha )\), the group of units in \(S_G\) precisely consists of those \(f\in S_G\) such that the map \(x\mapsto xf(x)\) is a bijection on G. Similar to the group of bisections, \(S_G(\alpha )\) acts on G from the right and on the space of continuous self-maps on G from the left. It is proved that \(S_G(\alpha )\) with the compact- open topology inherited from C(GG) is a left topological group. For a compact Hausdorff groupoid G it is proved that the group of bisections of \(G^2\) is isomorphic to the group \(S_G(\alpha )\) and the group of transitive bisections of G, \(Bis_T(G)\), is embedded in \(S_G(\alpha )\), where \(G^2\) is the groupoid of all composable pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号