首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM)   总被引:4,自引:0,他引:4  
Optically sliced microscopic-particle image velocimetry (micro-PIV) is developed using confocal laser scanning microscopy (CLSM). The developed PIV system shows a unique optical slicing capability allowing true depth-wise resolved micro-PIV vector field mapping. A comparative study between CLSM micro-PIV and conventional epi-fluorescence micro-PIV is presented. Both techniques have been applied to the creeping Poiseuille flows in two different microtubes of 99-m (Re=0.00275) and 516-m ID diameters (Re=0.021), which are respectively imaged by a 40×-0.75NA objective with an estimated 2.8-m optical slice thickness, and by a 10×-0.30NA objective with a 26.7-m slicing. Compared to conventional micro-PIV, CLSM micro-PIV consistently shows significantly improved particle image contrasts, definitions, and measured flow vector fields agreeing more accurately with predictions based on the Poiseuille flow fields. The data improvement due to the optical slicing of CLSM micro-PIV is more pronounced with higher magnification imaging with higher NA objectives for a smaller microtube.
Kenneth D. KihmEmail: Phone: +1-979-8452143
  相似文献   

2.
Variational optical flow estimation for particle image velocimetry   总被引:1,自引:1,他引:1  
We introduce a novel class of algorithms for evaluating PIV image pairs. The mathematical basis is a continuous variational formulation for globally estimating the optical flow vector fields over the whole image. This class of approaches has been known in the field of image processing and computer vision for more than two decades but apparently has not been applied to PIV image pairs so far. We pay particular attention to a multi-scale representation of the image data so as to cope with the quite specific signal structure of particle image pairs. The experimental evaluation shows that a prototypical variational approach competes in noisy real-world scenarios with three alternative approaches especially designed for PIV-sequence evaluation. We outline the potential of the variational method for further developments.The publications of the CVGPR Group are listed under .
P. RuhnauEmail:
H. NobachEmail:
  相似文献   

3.
Three-dimensional micro-PTV using deconvolution microscopy   总被引:1,自引:0,他引:1  
A three-dimensional micro-particle tracking velocimetry (micro-PTV) scheme is presented using a single camera with deconvolution microscopy. This method devises tracking of the line-of-sight (z) flow vectors by correlating the diffraction pattern ring size variations with the defocusing distances of small particle locations. The working principle is based on optical serial sectioning microscopy, or equivalently deconvolution microscopy, that records images of an infinitesimally small particle, and generates a point-spread function of the three-dimensional diffraction patterns. A new image-processing algorithm has also been developed to digitally identify the center locations and measure the radii of the diffraction rings, which allows simultaneous tracking of all three-vector components. The developed PTV technique uses a 40×, 0.75 NA dry objective lens with 500-nm fluorescent seeding particles of SG=1.05, and successfully measures the fully three-dimensional fields flowing over a spherical obstacle snuggly fitted inside a 100 μm × 100 μm micro-channel. The volumetric measurement resolution of the present system is equivalent to a 5.16 μm × 5.16 μm × 5.16 μm cube, and the overall measurement uncertainty for single-point velocity vector detection is estimated to ±7.58%.
K. D. KihmEmail: Phone: +1-865-9745292
  相似文献   

4.
We develop the axisymmetric Synthetic Schlieren technique to study the wake of a microscale sphere settling through a density stratification. A video-microscope was used to magnify and image apparent displacements of a micron-sized random-dot pattern. Due to the nature of the wake, density gradient perturbations in the horizontal greatly exceed those in the vertical, requiring modification of previously developed axisymmetric techniques. We present results for 780 and 383 μm spheres, and describe the limiting role of noise in the system for a 157 μm sphere. This technique can be instrumental in understanding a range of ecological and environmental oceanic processes on the microscale.
King-Yeung Yick (Corresponding author)Email:
Roman StockerEmail:
Thomas PeacockEmail:
  相似文献   

5.
The effect of independent variations of the intensity of individual tracer particles between consecutive images on the accuracy of common displacement estimation methods in particle image velocimetry (PIV) is investigated. Such variations can be observed, e.g., in flows with components perpendicular to the illumination sheet, leading to out-of-plane displacements of the tracer particles. The achievable accuracy of PIV measurements is shown to be limited by this effect alone to be of the order of 0.1 pixel, yielding a basic limitation of the PIV technique.
Holger NobachEmail:
  相似文献   

6.
A technique for obtaining accurate, high (spatial) resolution measurements of sediment redeposition levels is described. In certain regimes, the method may also be employed to provide measurements of sediment layer thickness as a function of time. The method uses a uniform light source placed beneath the layer, consisting of transparent particles, so that the intensity of light at a point on the surface of the layer can be related to the depth of particles at that point. A set of experiments, using the impact of a vortex ring with a glass ballotini particle layer as the resuspension mechanism, are described to test and illustrate the technique.
R. J. MunroEmail:
  相似文献   

7.
An iterative procedure, based on the proper orthogonal decomposition (POD), first proposed by Everson and Sirovich (J Opt Soc Am A 12(8):1657–1664, 1995) is applied to marred particle image velocimetry (PIV) data of shallow rectangular cavity flow at Mach 0.19, 0.28, 0.38, and 0.55. The procedure estimates the POD modes while simultaneously estimating the missing vectors in the PIV data. The results demonstrate that the absolute difference between the repaired vectors and the original PIV data approaches the experimental uncertainty as the number of included POD modes is increased. The estimation of the dominant POD modes is also shown to converge by examining the subspace spanned by the POD eigenfunctions.
Nathan E. Murray (Corresponding author)Email:
Lawrence S. UkeileyEmail:
  相似文献   

8.
Using operating principles similar to that applied in atomic force microscopes, we have developed a novel measuring method to study the aerodynamic forces, in particular the lift and drag force, acting on a small particle attached to a wall and immersed in a linear shear flow. Results thus far have shown that the system is capable of measuring both the minute aerodynamic lift and drag forces that a particle experiences as a result of the flow.C. Muthanna has also published under the name C. M. Kolera
C. MuthannaEmail:
  相似文献   

9.
This paper reports laser-Doppler measurements of the mean flow and turbulence stresses in a swirling pipe flow. Experiments were carried out under well-controlled laboratory conditions in a refractive index-matched pipe flow facility. The results show pronounced asymmetry in mean and fluctuating quantities during the downstream decay of the swirl. Experimental data reveal that the swirl significantly modifies the anisotropy of turbulence and that it can induce explosive growth of the turbulent kinetic energy during its decay. Anisotropy invariant mapping of the turbulent stresses shows that the additional flow deformation imposed by initially strong swirling motion forces turbulence in the core region to tend towards the isotropic two-component state. When turbulence reaches this limiting state it induces rapid production of turbulent kinetic energy during the swirl decay.
J. Jovanović (Corresponding author)Email:
F. DurstEmail:
  相似文献   

10.
Two- and three-dimensional flows in nearly cuboidal cavities are investigated experimentally. A tight cavity is formed in the gap between two long and parallel cylinders of large radii by adding rigid top, bottom, and end walls. The cross-section perpendicular to the axes of the cylinders is nearly rectangular with aspect ratio Γ. The axial aspect ratio Λ > 10 is large to suppress end-wall effects. The fluid motion is driven by independent and steady rotation of the cylinders about their axes which defines two Reynolds numbers Re 1,2. Stability boundaries of the nearly two-dimensional steady flow have been determined as functions of Re 1,2 for Γ = 0.76 and Γ = 1. Up to six different three-dimensional supercritical modes have been identified. The critical thresholds for the onset of most of the three-dimensional modes, three of which have been observed for the first time, agree well with corresponding linear-stability calculations. Particular attention is paid to the flow for Γ = 1 under symmetric and parallel wall motion. In that case the basic flow consists of two mirror symmetric counter-rotating parallel vortices. They become modulated in span-wise direction as the driving increases. Detailed LDV measurements of the supercritical three-dimensional velocity field and the bifurcation show an excellent agreement with numerical simulations.
Tanja Siegmann-Hegerfeld (Corresponding author)Email:
Stefan AlbensoederEmail:
Hendrik C. KuhlmannEmail:
  相似文献   

11.
The understanding of the physics of flapping flight has long been limited due to the obvious experimental difficulties in studying the flow field around real insects. In this study the time-dependent three-dimensional velocity field around a flapping wing was measured quantitatively for the first time. This was done using a dynamically-scaled wing moving in mineral oil in a pattern based on the kinematics obtained from real insects. The periodic flow is very reproducible, due to the relatively low Reynolds number and precise control of the wing. This repeatability was used to reconstruct the full evolving flow field around the wing from separate stereoscopic particle image velocimetry measurements for a number of spanwise planes and time steps. Typical results for two cases (an impulsive start and a simplified flapping pattern) are reported. Visualizations of the obtained data confirm the general picture of the leading-edge vortex that has been reported in recent publications, but allow a refinement of the detailed structure: rather than a single strand of vorticity, we find a stable pair of counter-rotating structures. We show that the data can also be used for quantitative studies, such as lift and drag prediction.
C. Poelma (Corresponding author)Email: Phone: +31-15-2782620
W. B. DicksonPhone: +1-626-3955775
  相似文献   

12.
Comment on the Clauser chart method for determining the friction velocity   总被引:1,自引:0,他引:1  
A known difficulty with using the Clauser chart method to determine the friction velocity in wall bounded flows is that it assumes, a priori, a logarithmic law for the mean velocity profile. Using both experimental and DNS data in the literature, this note explicitly shows how friction velocities obtained using the Clauser chart method can potentially mask subtle Reynolds-number-dependent behavior.
Tie WeiEmail:
  相似文献   

13.
A random synthetic jet array driven turbulence tank   总被引:1,自引:0,他引:1  
We measure the flow above an array of randomly driven, upward-facing synthetic jets used to generate turbulence beneath a free surface. Compared to grid stirred tanks (GSTs), this system offers smaller mean flows at equivalent turbulent Reynolds numbers with fewer moving parts.
Evan A. VarianoEmail:
  相似文献   

14.
An experimental device was set up for the synchronous measurement of velocities and stresses in polyisobutylenes using laser-Doppler velocimetry (LDV) and the two-colour flow-induced birefringence method (FIB). The materials investigated are three low molecular polyisobutylenes. Velocity (LDV) and stress (FIB) measurements are performed in the flow entrance region and inside a slit die with a contraction ratio of 1:10. The behaviour of the polyisobutylenes is Newtonian under the flow conditions applied. Therefore, the stresses inside the fluids can be calculated and compared to the stresses experimentally determined. A good agreement in shear and elongational flows was found between the calculated (LDV) and directly measured stresses (FIB). This result demonstrates the applicability of the experimental setup as an optical rheometer that can preferentially be used to measure elongational properties of low viscous fluids.
Helmut MünstedtEmail:
  相似文献   

15.
Single-pixel resolution ensemble correlation for micro-PIV applications   总被引:1,自引:3,他引:1  
A new correlation method for particle image velocimetry (PIV) is proposed that yields velocity data at single-pixel spatial resolution. This method is an extension of the ensemble correlation method for PIV. This single-pixel ensemble correlation method is particularly suited for (quasi-) stationary and periodic flows, which are typically encountered in many micro-PIV applications, such as microfluidics and micro-scale biological flows. The method can yield data at the same level of precision and reliability as conventional PIV data. The main advantage of the new method is that it can resolve steep velocity gradients and obtain unbiased measurements of the velocity in the vicinity of flow boundaries (viz. walls). The performance as a function of the ensemble size is investigated by means of synthetic PIV images. Both ensemble correlation and single-pixel correlation are applied to micro-channel flow. With single-pixel ensemble correlation we obtained a spatial resolution of 300 nm. The results demonstrate that ensemble correlation over-estimates the measured channel width, whereas single-pixel correlation yields a result that is in agreement with the actual channel dimensions.Parts of this paper were previously presented at the 11th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, 8–11 July 2002, and the 5th International Symposium on Particle Image Velocimetry, Busan, 22–24 September 2003.
J. WesterweelEmail:
  相似文献   

16.
This paper presents a theoretical model and corresponding experimental results of the oblique-incidence response of a luminescent photoelastic coating (LPC). LPCs use a luminescent dye that both partially preserves the stress-modified polarization state and provides high emission signal strength at oblique surface orientations. These characteristics enable the technique to acquire full-field strain separated measurements and principal strain directions, potentially on complex three-dimensional geometries, without the use of supplemental experimental or analytical techniques. Results of a single-layer LPC on a disk in diametral compression are presented to assess a theoretical model and evaluate the measurement sensitivity.
J. P. HubnerEmail:
  相似文献   

17.
We introduce the three-dimensional measurement technique (XPIV) based on a Particle Image Velocimetry (PIV) system. The technique provides three-dimensional and statistically significant velocity data. The main principle of the technique lies in the combination of defocus, stereoscopic and multi-plane illumination concepts. Preliminary results of the turbulent boundary layer in a flume are presented. The quality of the velocity data is evaluated by using the velocity profiles and relative turbulent intensity of the boundary layer. The analysis indicates that the XPIV is a reliable experimental tool for three-dimensional fluid velocity measurements.More information at:
G. HetsroniEmail:
  相似文献   

18.
The time-dependent behavior of bulk polymer film and wire with polymer insulation is studied using indentation. The indenter is displaced into the material at a constant rate and then held at a fixed indentation depth to monitor load relaxation. A finite element simulation of the experiment is performed; this analysis is parameterized in terms of the unknown shear compliance modeled as a Prony series. An optimization method is then presented to determine the unknown material parameters by minimizing the RMS error between the model and the experimental data. The method is demonstrated with poly (vinyl chloride) (PVC) films after thermal aging and pristine polyethylene sheet; excellent agreement between the model and the data is demonstrated. The method is also demonstrated to successfully characterize the material properties for the compression of a wire with PVC insulation; the resulting properties are then shown to adequately predict the crossed-cylinder indentation behavior of the same wire using a 3D finite element model. The chief benefit of the method is that an analytical solution method is not required for its implementation; as such, the optimization approach can be readily applied to the determination of material properties from arbitrarily complex experimental geometries.
R. D. Bradshaw (SEM member)Email:
  相似文献   

19.
An apparatus is described for the measurement of unsteady thrust and propulsive efficiency produced by biologically inspired oscillating hydrodynamic propulsors. Force measurement is achieved using a strain-gauge-based force transducer, augmented with a lever to amplify or attenuate the applied force and control the measurement sensitivity and natural frequency of vibration. The lever can be used to tune the system to a specific application and it is shown that, using the lever, the stiffness can be made to increase more rapidly than the measurement sensitivity decreases. Efficiency is computed from measurements of the time-averaged power imparted to the fluid. The apparatus is applied to two different propulsors, demonstrating the versatility of the system; wake visualizations are examined, which provide insight into the physical mechanisms of efficient propulsion.
James H. J. BuchholzEmail: Email:
  相似文献   

20.
Analysis of interpolation schemes for image deformation methods in PIV   总被引:1,自引:0,他引:1  
Abstract   Image deformation methods in particle image velocimetry are becoming more and more accepted by the scientific community but some aspects have not been thoroughly investigated neither theoretically nor with the aid of simulations. A fundamental step in this type of algorithm is reconstruction of the deformed images that requires the use of an interpolation scheme. The aim of this paper is to examine the influence of this aspect on the accuracy of the PIV algorithm. The performance assessment has been conducted using synthetic images and the results show that both the systematic and total errors are strongly influenced by the interpolation scheme used in the reconstruction of the deformed images. Time performances and the influence of particle diameter are also analysed.
T. AstaritaEmail: Phone: +39-081-7683389Fax: +39-081-2390364
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号