首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 80 毫秒
1.
The most stable conformation of ion-molecule complexes involving a CO molecule were surveyed by the use of Hartree-Fock (HF) MO and third-order Moller-Plesset perturbation (MP3) methods with a 6–31G* basis set ion = H+, Li+, Na+, K+, Bc2+, Mg2+, and Ca2+. The MP3 level of theory reveals the ion-CO conformation in which the ion bonds to a carbon atom of CO to be the most stable; these MP3 results are contrary to the HF ones. Binding energies of ion-molecule complexes involving CO and N2 were computed; MP3 energies are in good agreement with the experimental ones. The computed binding energies of cation-N2 are about one-third of cation-NH3 due to the absence of dipole moment and the smaller polarizability of N2. The decrease in binding energy in cation-CO and -N2 complexes, with increasing cation size, is mainly caused by the decrease of the electrostatic and polarization stabilizations.  相似文献   

2.
Integral scattering cross sections have been measured for alkali ions (Li+, Na+ and K+) in the energy range 500–4000 eV scattered by room temperature N2 and CO molecules through effective laboratory angles greater than 5 × 10?3 rad. The repulsive potentials deduced from the cross sections are represented bya practically identical formula for the Na+N2 and Na+CO systems, and for the K+CO systems, respectively, while the repulsive potentials of the Li+N2 system are somewhat smaller than those of the Li+CO system at larger intermolecular distances.  相似文献   

3.
Third row transition metal hexafluorides (MF6) for which the electron affinity exceeds 130 kcal/mole (M = Os, Ir, Pt) have been found to intercalate graphite with electron oxidation of the host lattice, whereas those with inferior electron affinities (M = W, Re) do not intercalate1. This behavior can be rationalized on kinetic or thermodynamic grounds; arguing for the latter, a simple Born-Haber cycle may be used which suggests an electron affinity threshold of 120–130 kcal/mole for the MF6 intercalation reaction. For the general case of intercalation reactions by metal fluorides (with or without added fluorine), wherein the graphite lattice is oxidized, the threshold is determined by the free energy of the half-reaction which produces the intercalating fluoro-anion. The lattice energy of the graphite salt must also be taken into account when comparing free energy thresholds for large (e.g., MF6) and small (e.g. HF2?) intercalating species.We have evaluated the free energy of formation of a number of fluoro-anions from the heats of formation and lattice energies of salts which contain them. These studies indicate a threshold free energy of ca. 110 kcal/mole for graphite intercalation. Two ‘borderline’ second stage compounds, C24+SiF5? and C12+HF2?, have been synthesized.  相似文献   

4.
The collision-induced breakup of CH3O2+ ions, produced in various binary ion—neutral reactions, was investigated in a drift experiment in the energy range from 0.2 to 1.2 eV. The products observed were HCO+ (50%) and H3O+ (50%), independent of the collision energy inducing the breakup. The energy barrier for the breakup is 22 ± 6 kcal/mole.  相似文献   

5.
Near Hartree-Fock level ab initio molecular orbital calculations on H3O+ and a minimum energy structure with θ(HOH) = 112.5° and r(OH) = 0.963 Å and an inversion barrier of 1.9 kcal/mole. By comparing these results to calculations on NH3 and H2O, where precise experimental geometries are known, we estimate the “true” geometry of isolated H3O+ to have a structure with θ(HOH) = 110-112°, r(OH) = 0.97–0.98 Å and an inversion barrier of 2–3 kcal/mole. Our prediction for the proton affinity of water is ≈ 170 kcal/mole, which is somewhat smaller than the currently accepted value.  相似文献   

6.
The potential curves for aquacomplexes of Li+, Na+ K+ ions with the coordination numbers, n, equal to 4, 6 and 8 have been calculated by the extended Hückel method. The equilibrium values of the hydrated shell radius and the binding energy have been determined. The complexes of Li+ with n = 6 and Na+ and K+ with n = 8 were found to be the most advantageous energetically. As could be expected the contribution of the 3d-orbitals to the binding for the K+ion is much more considerable than for the Na+ion. The character of the potential curves for aquacomplexes of sodium and potassium ions is quite different. In the case of the K+ion the curves are found to be very smooth and slowly decreasing with distance, which can be attributed to the poor hydratability of this ion and the “loosening” of water structure by it.  相似文献   

7.
The binding of calcium and magnesium to human serum albumin has been studied in the pH region 2.5–8.0 by a calorimetric procedure. Both metal ions bind to the carboxylate groups of albumin. 36 and 44 carboxylate groups appear to be involved in the binding of Ca2+ and Mg2+, respectively. Based on previously reported results that twelve Ca2+ ions are the maximum which can bind to albumin, the results given here support previous X-ray crystallographic evidence that three carboxylate groups can be involved in the binding of a Ca2+ by a protein. The data also confirm that Ca2+ and Mg2+ binding is competitive. Binding of the cations to the carboxylate groups appears to involve the breaking of carboxylate-imidazole hydrogen bonds in the protein. Log K, ΔH and ΔS values obtained for the binding of metal ions to albumin in aqueous solution at 25°C are 2.72 ± 0.02, 0.0 ± 0.1 kcal/mole, and 12.4 ± 0.3 cal/mole K for Ca2+ and 1.12 ± 0.05, ?0.2 ± 0.1 kcal/mole, and 4.5 ± 0.3 cal/mole K for Mg2+, respectively.  相似文献   

8.
Phase space theory expressions for the reaction cross section and rate constant of atomic reactants going to atomic products are derived. These results are applied to the reaction Na+ + K?→K+ + Na? (Δε = 0.8 eV), K+ + K?→K? + K+ (Δε = 0.0 eV) and the results compared with the recently published thermal energy data of Riggin and Bloom.  相似文献   

9.
The recombination energy of N22+ has been computed using N22+, N22+ and N2 potential curves from the literature. Vibrational overlaps and energies liberated in the various N22+3?g,1g+, 3Πu, 1Πu → N2+(X2+g, A 2+g, A 2Πu, B2u+,C2u+) vibronic transitions have been computed and used as input for determination of the N2+ recombination energy.  相似文献   

10.
The range of chemical flexibilities of the hexagonal frameworks (Ta6Si4O26)6? and (Ta14Si4O47)8? have been partially explored. This has been done with high-temperature preparations as in general ionic mobilities in these frameworks are too low to permit low-temperature ion exchange. Ionic site potential calculations indicate that preferential site-occupancy factors as well as geometric constraints are responsible for the absence of ionic motion. New phases K6?xNaxTa6Si4O26 (x ? 4), K8?xNaxTa14Si4O47 (x ? 5), and impure Ba3?xNa2xTa6Si4O26 have been prepared. Introduction of up to 2 moles of Li+ and 1 mole of Mg2+ ions per formula unit into sites of the framework not normally occupied has been demonstrated as well as the possibility of partially substituting Zr4+ for Ta5+ ions. Substitutions designed to introduce large tunnel vacancies in the presence of only monovalent K+ or Na+ ions (P for Si, W for Ta and F for O) generally proved unsuccessful. Competitive phases also frustrated attempts to substitute either the larger Rb+ or the smaller Li+ ions into the large-tunnel sites. A large area of solid solution was discovered in the BaONa2OTa2O5 phase diagram; it has a (TaO3)-framework with the structure of tetragonal potassium tungsten bronze.  相似文献   

11.
Potential curves for proton transfer in [H5O2]+ and for the dissociation of one OH bond in [H3O]+ were calculated by both ab initio and semi-empirical LCAO MO SCF CI methods. The energy barrier of the symmetric double minimum potential in [H5O2]+ is very sensitive to electron correlation. At an OO distance of 2.74 Å it decreases from the HF value of 9.5 kcal/mole to about 7.0 kcal/mole. The results of the semi-empirical calculations agree well with the ab initio data as long as only relative effects are regarded. The partitioning of correlation energy into contributions of individual electron pairs is very similar for proton transfer in [H5O2]+ and for the dissociation of one OH bond in [H3O]+. In this example the proton transfer appears as a superposition of two “contracted ionic dissociation” processes. An interpretation of the behaviour of correlation during these processes is presented.  相似文献   

12.
The binding of the Li+, Na+, K+, Mg2+, and Co2+ ions by 21,31-diphenyl-12,42-dioxo-7,10,13-trioxa-1,4(3,1)-diquinoxaline-2(2,3),3(3,2)-diindolysine-cyclopentadecaphane containing two indolysine fragments, two quinoxaline fragments, and 3,6,9-trioxyundecane spacer in the acetonitrile/0.1 M Bu4NBF4 environment is studied by the method of cyclic voltammetry. It is demonstrated that the Li+, Na+, K+, and Co2+ ions are not bound by this macrocycle, whereas selective redox-switchable binding is observed for the Mg2+ ions. The macrocycle binds the Mg2+ ions way more efficiently as compared with its radical cation and dication. The indolysinequinoxaline fragments play the determining role in the binding. Original Russian Text ? V.V. Yanilkin, N.V. Nastapova, V.A. Mamedov, A.A. Kalinin, V.P. Gubskaya, 2007, published in Elektrokhimiya, 2007, Vol. 43, No. 7, pp. 808–814.  相似文献   

13.
Potential energy surfaces for Na(2S, 2P) interacting with a partially covered tungsten surface are computed within the framework of the method of diatomics-in-molecules (DIM). Only two sodium atoms are considered explicitly but the effect of all of the adsorbed sodium is taken into account through its influence on the fragment matrix elements in the DIM formulation. Na2+ wavefunctions are approximated by valence-bond calculations for the 2Σg+ and 2Σu+ manifolds. The three lowest potential energy surfaces of the polyatomic system suggest plausible pathways for the production of Na+ and Na2+ ions from the interaction of Na(2P) atoms with the metal surface as observed by Auschwitz and Lacmann.  相似文献   

14.
Mass-selected beams of N+ and N2+ in the energy range 5–50 eV react with molybdenum to produce a surface nitride. The relative reaction cross section for N+ reaction is higher than that of N2+ in the range 5–25 eV and N2+ exhibits a reaction threshold near 7 eV. The N2+ threshold suggests collisional dissociation prior to reaction.  相似文献   

15.
Ab initio wavefunctions have been calculated for the complex of Li+ with NH3 and H2O in order to better characterize the nature of the bonding. Hartree—Fock and generalized valence bond calculations were performed using a double zeta basis plus polarization functions. The binding energies obtained at the GVB level are De (Li+ — NH3) = 40.4 kcal/mol and De (Li+ ? H2O) = 37.6 kcal/mol, in reasonable agreement with experimental values. Model calculations indicate that the Li+ ? base bond is basically electrostatic. Small basis sets were found to lead to De as large as 75 kcal/mol for Li+ — NH3, a significant overestimation. Repulsions due to the Li+ core are responsible for keeping the Li+ too far away for significant relaxation effects.  相似文献   

16.
Various GTO basis sets were investigated for their effectiveness in determining the SCF energy and geometry of the HFH+ molecule. A double zeta set augmented with a pz function on each H atom was used to calculate the potential energy surface for the collinear protonation of HF. Limited configuration interaction calculations gave an energy of ?100.27365 Ea for an HF separation of 1.819 a0 and a bond angle of 118.1°, and an energy of protonation of 119.5 kcal/mol.  相似文献   

17.
The potential energy curve of the system Li+/He has been determined with moderately large basis sets for 0.5 ? r ? 10.0 a0 both at the SCF level and including correlation. The present SCF results predict a deeper well (?0.00248 au) at a smaller r(3.66 a0) compared with earlier calculations. Correlation deepens the well further (?0.00274 au), but pulls it inward slightly (3.63 a0). In the repulsive part the calculated curve lies above the experimental one, especially at shorter distances. A similar behavior has been noted in the systems Li+/H2, Li+/CO and Li+/N2, suggesting that the experimental determinations may underestimate the interaction in this region by 10–20%.  相似文献   

18.
The aim of the study was to give an overview of the mechanism of inhibition of Na+/K+-ATPase activity induced by some specific and non specific inhibitors. For this purpose, the effects of some ouabain like compounds (digoxin, gitoxin), noble metals complexes ([PtCl2DMSO2], [AuCl4], [PdCl4]2−, [PdCl(dien)]+, [PdCl(Me4dien)]+), transition metal ions (Cu2+, Zn2+, Fe2+, Co2+), and heavy metal ions (Hg2+, Pb2+, Cd2+) on the activity of Na+/K+-ATPase from rat synaptic plasma membranes (SPM), porcine cerebral cortex and human erythrocytes were discussed. The article is published in the original.  相似文献   

19.
Mass spectrometric studies of the ions present in H2/O2/N2 flames with potassium and chlorine added have demonstrated that ionization can occur in the forward steps of K + Cl ? K+ + Cl? (II), KCl + M ? K+ + Cl? + M (IV), where M is any third body. Variations of [K+] with time in these systems have been measured and establish that the rate coefficients (in ml molecule?1 s?1) of the ion-producing steps are k2 = 5 × 10?10T?12 exp(?10 500/T) and k4 = 2.2 × 107T?3.5 × exp(?60 800/T). Coefficients for ion-ion recombination have been obtained from k2 and k4 using the equilibrium constants of (II) and (IV) and are k?2 = 1.7 × 10?9T?12 and k?4 = 1.1 × 10?17T?3, with each one in the ml molecule?1 s?1 system of units. Replacement of the N2 in one of these flames with sufficient Ar to maintain the temperature constant leaves the measured k2 and k?2 unchanged, but lowers the observed k4 and k?4. This confirms that ion-recombination in the backward step in (II) is a two-body process, whereas in (IV) it is termolecular.  相似文献   

20.
A cluster of 200 water molecules containing a single ion (either Li+ or Na+ or K+ or F? or Cl?) has been studied at T = 298 K using Monte Carlo techniques. The waterwater interaction is obtained from a quantum-mechanical study of CI type; the ionwater potentials have been obtained from HartreeFock type computations. The computed coordination numbers in the first shell for Li+, Na+, K+, F? and Cl? are 4.0, 4.3, 5.1, 3.85 and 4.3, respectively; the corresponding first hydration shell radii are 2.28 Å, 2.59 Å, 3.27 Å, 1.99 Å and 2.85 Å, respectively. A discussion of the second and third hydration shell radii and coordination numbers is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号