首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The scale factors of the ab initio SCF STO-3G and MINI-1, and semiempirical PM3 harmonic force fields were determined by fitting to the Raman and IR spectra of polycrystalline uracil and thymine. Both in-plane and out-of-plane vibrational modes have been interpreted. The transferability of the scale factors between uracil and thymine and the performance of different computational methods were discussed. The Fermi resonance of the overtones of the out-of-plane deformation vibrations of oxygens with their stretching modes have been proposed as an explanation for the band splitting observed in the 1600–1800 cm−1 region of uracil.  相似文献   

2.
5-Fluorouracil is an analogue of thymine and uracil, nucleobases found in DNA and RNA, respectively. The photochemistry of thymine is significant; UV-induced photoproducts of thymine in DNA lead to skin cancer and other diseases. In previous work, we have suggested that the differences in the excited-state structural dynamics of thymine and uracil arise from the methyl group in thymine acting as a mass barrier, localizing the vibrations at the photochemical active site. To further test this hypothesis, we have measured the resonance Raman spectra of 5-fluorouracil at wavelengths throughout its 267 nm absorption band. The spectra of 5-fluorouracil and thymine are very similar. Self-consistent analysis of the resulting resonance Raman excitation profiles and absorption spectrum using a time-dependent wave packet formalism suggests that, at most, 81% of the reorganization energy upon excitation is directed along photochemically relevant modes. This compares well with what was found for thymine, supporting the mass barrier hypothesis.  相似文献   

3.
5-Fluorouracil is an artificial nucleobase analog of thymine and uracil, with a substituent in the 5-position that has a mass similar to the methyl group in thymine, but very different electronic, steric and vibrational coupling properties. UVC irradiation of 5-fluorouracil dideoxyribonucleoside monophosphate (dXpdX) is examined here with mass spectrometry and UV-Vis absorption spectroscopy and is compared to the UV photochemistry of other pyrimidine dideoxyribonucleoside monophosphates. The results show that the photochemical products and kinetics of dXpdX are similar to those of uracil dideoxyribonucleoside monophosphate and similar to those of the isolated 5-fluorouracil nucleobase. The photochemistry of dXpdX is compared to the photochemistry of thymine and uracil dideoxyribonucleoside monophosphates.  相似文献   

4.
Sharp peaks in the dissociative electron attachment (DEA) cross sections of uracil and thymine at energies below 3 eV are assigned to vibrational Feshbach resonances (VFRs) arising from coupling between the dipole bound state and the temporary anion state associated with occupation of the lowest sigma* orbital. Three distinct vibrational modes are identified, and their presence as VFRs is consistent with the amplitudes and bonding characteristics of the sigma* orbital wave function. A deconvolution method is also employed to yield higher effective energy resolution in the DEA spectra. The site dependence of DEA cross sections is evaluated using methyl substituted uracil and thymine to block H atom loss selectively. Implications for the broader issue of DNA damage are briefly discussed.  相似文献   

5.
Vibrational spectra are reported in the N-H stretching region for uracil and thymine monomers in helium nanodroplets. Each monomer shows only a single isomer, the global minimum, in agreement with previous experimental and theoretical studies. The assignment of the infrared vibrational bands in the spectra is aided by the measurement of the corresponding vibrational transition moment angles (VTMAs) and ab initio frequency calculations. The ambiguity in the VTMA assignment of the N3H band for the uracil monomer is explained by the presence of dimer bands, which are overlapped with the monomer band.  相似文献   

6.
The energetics of the ion-molecule interactions and structures of the clusters formed between protonated nucleic acid bases (cytosine, uracil, thymine, and adenine) and ammonia have been studied by pulsed ionization high-pressure mass spectrometry (HPMS) and ab initio calculations. For protonated cytosine, uracil, thymine, and adenine with ammonia, the measured enthalpies of association with ammonia are -21.7, -27.9, -22.1, and -17.5 kcal mol-1, respectively. Different isomers of the neutral and protonated nucleic acid bases as well as their clusters with ammonia have been investigated at the B3LYP/6-31+G(d,p) level of theory, and the corresponding binding energetics have also been obtained. The potential energy surfaces for proton transfer and interconversion of the clusters of protonated thymine and uracil with ammonia have been constructed. For cytosine, the experimental binding energy is in agreement with the computed binding energy for the most stable isomer, CN01-01, which is derived from the enol form of protonated cytosine, CH01, and ammonia. Although adenine has a proton affinity similar to that of cytosine, the binding energy of protonated adenine to ammonia is much lower than that for protonated cytosine. This is shown to be due to the differing types of hydrogen bonds being formed. Similarly, although uracil and thymine have similar structures and proton affinities, the binding energies between the protonated species and ammonia are different. Strikingly, the addition of a single methyl group, in going from uracil to thymine, results in a significant structural change for the most stable isomers, UN01-01 and TN03-01, respectively. This then leads to the difference in their measured binding energies with ammonia. Because thymine is found only in DNA while uracil is found in RNA, this provides some potential insight into the difference between uracil and thymine, especially their interactions with other molecules.  相似文献   

7.
The binding mechanism between 9-vinyladenine and pyrimidine base thymine in methanol was studied with UV-visible spectrophotometric method. Based on this study, using thymine as a template molecule, 9-vinyladenine as a novel functional monomer and diethylene glycol dimethacrylate as a new cross-linker, a specific diethylene glycol dimethacrylate-based molecularly imprinted polymeric membrane was prepared over a cellulose support. Then, the resultantly polymeric membrane morphologies were visualized with scanning electron microscopy and its permselectivity was examined using thymine, uracil, cytosine, adenine and guanine as substrates. This result showed that the imprinting polymeric membrane prepared with diethylene glycol dimethacrylate exhibited higher transport capacity for the template molecule thymine and its optimal analog uracil than other nucleic acid bases. The membrane also took on higher permselectivity than the imprinted membrane made with ethylene glycol dimethacrylate as a cross-linker. When a mixture including five nucleic acid bases thymine, uracil, cytosine, adenine and guanine passed through the diethylene glycol dimethacrylate-based thymine-imprinted polymeric membrane, recognition of the membrane for the template molecule thymine and its optimal analog uracil was demonstrated. It was predicted that the molecularly imprinted membrane prepared with diethylene glycol dimethacrylate as cross-linker might be applicable to thymine assay of absolute hydrolysates of DNA or uracil assay of absolute hydrolysates of RNA in biological samples because of its high selectivity for the template molecule thymine and its optimal analog uracil.  相似文献   

8.
The partial molar volumes of uracil, thymine and adenine in water and adenine in aqueous solutions of uracil and thymine, at fixed composition, were determined over a range of temperatures. The partial molar volumes of adenine in aqueous uracil and thymine are less than in pure water.  相似文献   

9.
Self-clustering of the five common nucleobases was investigated by electrospray ionization tandem mass spectrometry and shown to provide insight into the non-covalent interactions between identical bases. Alkali and ammonium cations significantly increase self-aggregation of the nucleobases and lead to the formation of uniquely stable magic number clusters. Sodium adducts of guanine, thymine and uracil preferentially take the form of tetrameric (quartet) clusters. This gas-phase result correlates with previously reported solution-phase data on sodium cation stabilized guanosine, thymine and uracil quartet structures believed to be responsible for telomere stabilization. In the presence of potassium, cesium or ammonium cations, pentameric magic number clusters are formed from thymine and uracil, while in solution the nucleoside isoguanosine yields clusters of this favored size. The formation of magic number metaclusters occurs for thymine and uracil in the presence of ammonium cations. These doubly charged 10- and 15-mers are tentatively attributed to the formation of pentamer/ammonium cation/ pentamer sandwich structures.  相似文献   

10.
In the present study the ionization energy thresholds (IET's) of uracil and thymine have been calculated (with the B3LYP, PMP2, and P3 levels of theory using the standard 6-31++G(d,p) basis set) with one to three water molecules placed in the first hydration shell. Then (B3LYP) polarizable continuum model (PCM) calculations were performed with one to three waters of the hydration shell included. Calculations show there is a distinct effect of microhydration on uracil and thymine. For uracil, one added water results in a decrease in the IET of about 0.15 eV. The second and third water molecules cause a further decrease by about 0.07 eV each. For thymine, the first water molecule is seen to decrease the IET by about 0.1 eV, while the second and third water molecules cause a further decrease of less than 0.1 eV each. The changes in IET calculated here for thymine with one to three waters of hydration are smaller than the experimental values determined by Kim et al. (Kim, S. K.; Lee, W.; Herschbach, D. R. J. Phys. Chem. 1996, 100, 7933). Preliminary results presented here indicate that the experimental results may involve keto-enol tautomers of thymine. The results of placing the microhydrated structures of uracil and thymine in a PCM cavity was seen to make very little difference in the IET when compared to the IET of ordinary uracil or thymine in a PCM cavity. The implications are that accurate calculations of the IET's of uracil and thymine can be obtained by simply considering long-range solvation effects.  相似文献   

11.
All planar homopairings of the DNA base thymine and the RNA base uracil are reported for the first time in this study. Using the idea of binding sites discussed in our previous work (Kelly et al. J. Phys. Chem. B 2005, 109, 11933; J. Phys. Chem. B 2005, 109, 22045) and ab initio density functional theory, we predict and relax 10 thymine and 10 uracil homopairs. The stabilization energies of the homopairs vary from just below zero to -0.82 eV. The results on the pair geometry and energetics are compared with those available in the literature. The collected data on all planar thymine and uracil homopairs can be used to construct the thymine and uracil superstructures seen experimentally on various surfaces.  相似文献   

12.
王长生  刘朋  于楠 《物理化学学报》2013,29(6):1173-1182
深入理解药物分子和核酸碱基间的相互作用机制对合理设计研发新型高效药物有重要意义. 本文运用密度泛函理论B3LYP方法对核酸碱基尿嘧啶和胸腺嘧啶与药物分子槲皮素间的氢键相互作用位点进行了研究. 使用B3LYP/6-31G(d)方法优化得到了30个稳定的氢键复合物结构, 使用B3LYP/6-311++G(3df,2p)方法计算了这些复合物的结合能. 研究结果表明, 槲皮素可以使用5个不同的结合位点与尿嘧啶或胸腺嘧啶形成氢键复合物, 尿嘧啶或胸腺嘧啶可以使用3个不同的结合位点与槲皮素形成氢键复合物. 当槲皮素的结合位点固定时, 槲皮素与尿嘧啶的位点u1或胸腺嘧啶的位点t1形成的氢键作用最强, 与位点u2或位点t2形成的氢键强度最弱; 当尿嘧啶或胸腺嘧啶的作用位点固定时, 二者与槲皮素的位点qu1 形成的氢键作用最强, 与位点qu5 作用强度次之, 与位点qu3的作用强度最弱. 分子中原子(AIM)和自然键轨道(NBO)分析计算结果表明, 轨道作用在氢键中起重要作用.  相似文献   

13.
The solubilities of adenine in water, thymine in methanol, and uracil in methanol were determined over the temperature range 15–40°C. From these and previously reported data the thermodynamic functions for the transfer of the solute from water to methanol were calculated. The differences in transfer functions for uracil and thymine are due to hydrophobic hydration of the methyl group of thymine.  相似文献   

14.
Intra-and intermolecular interactions in acyclic compounds containing nucleotide base (uracil and thymine) derivatives and their macrocyclic analogs (pyrimidinophanes) were studied by IR, UV, luminescence, and NMR spectroscopy. Molecules of these compounds include one or two N3-methylsubstituted or N3-unsubstituted uracil fragment or two adenine fragments linked through a hexamethylene spacer to an uracil, 5,5′-methylenediuracil or diphenylmethane fragment. The examined compounds almost all are characterized by π-π interactions and intramolecular hydrogen bonding between the terminal uracil or adenine fragments. Intramolecular association constants were determined and factors affecting them were discussed. Complex formation of acyclic and macrocyclic ligands with adenine and thymine derivatives was studied. The low values of the association constants were interpreted in terms of a competition between intra-and intermolecular bonding and very labile ligand structure.  相似文献   

15.
This theoretical study investigates possible synthetic routes to cytosine, uracil and thymine in the gas phase from precursor molecules that have been detected in interstellar media. Studies at the CCSD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p) level of theory suggest that: The reactions between :CCCNH and :CCCO with monosolvated urea may constitute viable interstellar syntheses of cytosine and uracil. No low energy equilibration between cytosine and uracil has been demonstrated. The interaction of :CH(2) with the 5 C-H bond of uracil may form thymine in an energetically favourable reaction, but competing reactions where :CH(2) reacts with double bonds and other CH and NH bonds of uracil, reduce the effectiveness of this synthesis. The reaction between the hydrated propional enolate anion and isocyanic acid may produce thymine, in a reaction sequence where ΔG(reaction)(298 K) is -22 kJ mol(-1) and the maximum energy requirement (barrier to the first transition state) is only 47 kJ mol(-1).  相似文献   

16.
Abstract— Evidence is presented for the formation of a thymine hydrate upon ultraviolet (UV) or gamma irradiation of aqueous solutions. The UV quantum efficiency exhibits a dependence on pH similar to that shown for uracil hydration, but the yield is three orders of magnitude smaller than for uracil. Hydration is not affected by wavelength, oxygen, or concentration of thymine. The reversal rate of the photohydrate to thymine is similar to the reversal rates of both isomers of the thymine hydrate formed by γ radiolysis, and depends on pH in the same way as the rate for the uracil photohydrate. The photohydrate of thymine is chromatographically identical to the cis isomer of 6-hydroxy-5, 6-dihydrothymine.  相似文献   

17.
Oxidation of uracil or thymine by MnVI in aqueous alkali shows first order dependence on [MnO 4 2− ] and fractional order dependence on [uracil] or [thymine]. The effect of ionic strength is negligible on the rate of oxidation. The product of oxidation is the 5,6-dihydroxy compound. A mechanism is proposed involving the formation of a 5-membered cyclic complex between the substrate and manganate in a fast step, which subsequently disproportionates to give the final products. The large negative values of the entropy of activation suggest the formation of an intermediate complex. The formation constants of the latter and the rate of its disproportionation have been calculated from the derived rate law. The rate of oxidation of thymine is faster than that of uracil.  相似文献   

18.
The structures of the DNA and RNA bases cytosine, uracil, and thymine in thin films with a nominal film thickness of about 20 nm are studied by using X‐ray photoemission spectroscopy (XPS) and Fourier‐transform infrared spectroscopy. The molecules are evaporated in situ from powder on a gold foil. The experimental results indicate that cytosine is composed of two energetically close tautomeric forms, whereas uracil and thymine exist in only one tautomeric form. Additionally, quantum chemical calculations are performed to complement the experimental results. The relative energies of the tautomeric forms of cytosine, uracil, and thymine are calculated using Hartree–Fock (HF), density functional theory (DFT), and post‐HF methods. Furthermore, the assignment of the XPS spectra is supported by using simple model considerations employing Koopmans ionization energies and Mulliken net atomic charges.  相似文献   

19.
The mechanisms of the ultrafast nonradiative deactivation of uracil and its substituted derivatives thymine (5-methyluracil) and 5-fluorouracil after absorption of UV light are explored and compared by means of ab initio multistate (MS) CASPT2 calculations. The MS-CASPT2 method is applied for the calculation of potential energy profiles, especially for the geometry optimization in the electronically excited state, with the aim of an accurate prediction of deactivation pathways. The resulting energy curves of each molecule exhibit that the conical intersection between the (1)ππ* and ground states is accessible via small energy barriers from the minimum in the (1)ππ* state as well as from that in the (1)nπ* state. The barrier of 5-fluorouracil in the (1)ππ* state is calculated to be definitely higher than those of uracil and thymine, which is consistent with experiments and suggests that the elongation of the excited-state lifetime of uracil by fluorine substitution is significantly contributed from intrinsic electronic effect of the molecule. However, no evidence of the experimentally observed longer excited-state lifetime of thymine than uracil is found in the presently calculated MS-CASPT2 potential energy curves in the (1)ππ* and (1)nπ* states, implying nonnegligible contribution of other factors such as solvation effect and substituent mass to the photoinduced dynamics of uracil derivatives.  相似文献   

20.
Using regioselective cuprations (via magnesiations), various primary, secondary and tertiary aminated pyrimidine and purine derivatives were prepared by the oxidative coupling of lithium amidocuprates using chloranil. DNA and RNA units such as aminated uracil or thymine, and adenine, as well as a CDK inhibitor, purvalanol A, were all obtained under mild conditions and satisfactory yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号