首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple method to prepare57Fe enriched K4[Fe(CN)6] and K3[Fe(CN)6] is described. The yields of the products are much better than those reported in the literature so far. The enrichment is essential for57Fe Mössbauer investigation in a variety of Prussiate type complexes and other inorganic compounds which are conveniently prepared from K4[Fe(CN)6] and K3[Fe(CN)6]. K4[Fe(CN)6] was obtained by reacting freshly prepared Fe(OH)3 with glacial acetic acid and treating with iron acetate in boiling aqueous solution of KCN. The novel feature of the procedure to obtain K3[Fe(CN)6] is that the oxidation of K4[Fe(CN)6] has been carried out in the solid state by passing chlorine gas over the powdered specimen. K3[Fe(CN)6] was crystallised from alkaline solution of this oxidised powder. The compounds were characterised by Mössbauer spectroscopy.  相似文献   

2.
On the Crystal Structures of the Cyano Complexes [Co(NH3)6][Fe(CN)6], [Co(NH3)6]2[Ni(CN)4]3 · 2 H2O, and [Cu(en)2][Ni(CN)4] Of the three title compounds X‐ray structure determinations were performed with single crystals. [Co(NH3)6][Fe(CN)6] (a = 1098.6(6), c = 1084.6(6) pm, R3, Z = 3) crystallizes with the CsCl‐like [Co(NH3)6][Co(CN)6] type structure. [Co(NH3)6]2[Ni(CN)4]3 · 2 H2O (a = 805.7(5), b = 855.7(5), c = 1205.3(7) pm, α = 86.32(3), β = 100.13(3), γ = 90.54(3)°, P1, Z = 1) exhibits a related cation lattice, the one cavity of which is occupied by one anion and 2 H2O, whereas the other contains two anions parallel to each other with distance Ni…Ni: 423,3 pm. For [Cu(en)2][Ni(CN)4] (a = 650.5(3), b = 729.0(3), c = 796.5(4) pm, α = 106.67(2), β = 91.46(3), γ = 106.96(2)°, P1, Z = 1) the results of a structure determination published earlier have been confirmed. The compound is weakly paramagnetic and obeys the Curie‐Weiss law in the range T < 100 K. The distances within the complex ions of the compounds investigated (Co–N: 195.7 and 196.4 pm, Ni–C: 186.4 and 186.9 pm, resp.) and their hydrogen bridge relations are discussed.  相似文献   

3.
Thermal expansion of materials is a comparatively easy‐understood physical property. Prussian blue analogues are of particular interest in engineering as new zero thermal expansion materials. We investigated the thermal expansion in K0.46Co1.27[Fe(CN)6] · 5.5H2O by x‐ray powder diffraction. This compound is a good example of a zero thermal expansion material. The origin of zero thermal expansion is considered to be the low frequency transverse vibrational motion of the cyano bridges.  相似文献   

4.
Distinct spectral features at the Fe L-edge of the two compounds K3[Fe(CN)6] and K4[Fe(CN)6] have been identified and characterized as arising from contributions of the ligand pi orbitals due to metal-to-ligand back-bonding. In addition, the L-edge energy shifts and total intensities allow changes in the ligand field and effective nuclear charge to be determined. It is found that the ligand field term dominates the edge energy shift. The results of the experimental analysis were compared to BP86 DFT calculations. The overall agreement between the calculations and experiment is good; however, a larger difference in the amount of pi back-donation between Fe(II) and Fe(III) is found experimentally. The analysis of L-edge spectral shape, energy shift, and total intensity demonstrates that Fe L-edge X-ray absorption spectroscopy provides a direct probe of metal-to-ligand back-bonding.  相似文献   

5.
The crystal structures of Co3[Co(CN)6]2, 12 H2O (a, = 10.210 ± 0.005 Å) and Cd3[Co(CN)6]2, 12 H2O (a = 10.590 ± 0.005 Å) have been determined by X-ray powder methods. According to the measured density the unit cell contains 1 1/3 formula units with 4 Co2+ (Cd2+) in 4a, 2 2/3 Co3+ in 4b, 16 C and 16 N in 24e, 8 H2OI near 24e, (96k) and 8 H2OII near 8 c (192 l). Structure factor calculations based on the space group Oh5 - F m 3 m lead to the following final values of the reliability index R: 0.038 (Co3[Co(CN)6]2, 12 H2O) and 0.037 (Cd3[Co(CN)6]2, 12 H2O). The interatomic distances for the cobaltous compound (in parentheses for the cadmium compound) are: Co3+-C: 1.88 Å (1.89); C-N: 1.15 Å (1.17); Co2+-N: 2.08 Å (2.24); Co2+-OI: 2.10 Å (2.27); shortest OI-H-OII-bonds: 2.89 Å (2.82). Co3+ is octahedrally coordinated by six carbon atoms, the divalent metal ion by four nitrogen atoms and two water molecules. The two different metal ions are connected by M2+-N-C-Co3-bonds to a threedimensional network. The infrared and electronic spectra are shown to be in agreement with the results of the structure analyses of these compounds. The observed positions of the OH-stretching vibrations lead to a hydrogenbond-length of 2.8–2.95 Å.  相似文献   

6.
7.
Yi‐Zhong Zhu 《合成通讯》2013,43(19):3359-3366
Aryl nitriles have been prepared from the corresponding aryl halides with potassium hexacyanoferrate(II) using Pd/C as a catalyst. No ligand or cocatalyst is required. This protocol also avoids the use of highly toxic alkali cyanides. Furthermore, the catalyst can be recycled via simple filtration and washing sequences.  相似文献   

8.
The crystal structures of two square tetracyanocomplexes were determined. [Ni(dien)2][Ni(CN)4]·2H2O (NDNCH) and [Ni‐(dien)2][Pd(CN)4] (NDPC) (dien = diethylene triamine) exhibit ionic structures consisting of mer‐[Ni(dien)2]2+ cations and [Ni(CN)4]2‐ or [Pd(CN)4]2‐ anions, respectively. Moreover, the structure of NDNCH is completed by two water molecules of crystallisation. In both compounds hydrogen bonds contribute to the stabilisation of the structure. NDNCH dehydrates on air quickly yielding anhydrous [Ni(dien)2][Ni(CN)4] (NDNC). Its thermal decomposition proceeds in a complicated process followed by aerial oxidation of metallic nickel to NiO.  相似文献   

9.
K4[Fe(CN)6]-K3[Fe(CN)6]体系催化分光光度法测定痕量汞   总被引:1,自引:0,他引:1  
建立了一种测定痕量汞的催化分光光度新方法,它是基于汞能催化亚铁氰化钾分解生成Fe2 ,生成的Fe2 又与铁氰化钾反应生成兰色胶体溶液.方法的相对标准偏差≤5.3%,回收率为98.8%~104.8%之间,检出限为9.8×10-7 g/L;线性范围为0~0.050 μg/mL.  相似文献   

10.
The double complex salts [Ni(NH3)6]3[Fe(CN)6]2 and [Ni(NH3)6]3[Cr(CNS)6]2 were synthesized and their thermal decomposition in air was studied. The values of interplanar distances in crystal lattices were determined. The compounds are proposed as precursors for producing homogeneous bimetallic nanodimensional powders.  相似文献   

11.
The activity coefficients of K3[Co(CN)6], Mg3[Co(CN)6]2, and Ca3[Co(CN)6]2,are examined. The results highlight close similarity with the correspondinghexacyanoferrate (III) salts. On dilution, K3[Co(CN)6], like K3[Fe(CN)6], approachesthe limiting law from the upper side, while Mg3[Co(CN)6]2 and Ca3[Co(CN)6]2tend to the limiting law from the opposite side, like Mg3[Fe(CN)6]2,Ca3[Fe(CN)6]2, Sr3[Fe(CN)6]2, and Ba3[Fe(CN)6]2. Both kinds of behavior agreewith theory for a model of hard spheres bearing electric charges +1 and –3 or+2 and –3, respectively. The paramater values of the Pitzer equation for activityand osmotic coefficients are reported.  相似文献   

12.
13.
Crystal Structures of Octacyanomolybdates(IV). IV Dodecahedral [Mo(CN)8] Coordination of the Cyano‐Bridged Cobalt and Nickel Ammin Complexes MII2(NH3)8[Mo(CN)8] · 1.5 H2O (MII = Co, Ni) and Ni2(NH3)9[Mo(CN)8] · 2 H2O At single crystals of the hydrated cyano complexes Co2(NH3)8[Mo(CN)8] · 1.5 H2O (a = 910.0(4), b = 1671(2), c = 1501(1) pm, β = 93.76(6)°) and Ni2(NH3)8[Mo(CN)8] · 1.5 H2O (a = 899.9(9), b = 1654.7(4), c = 1488(1) pm, β = 94.01°), isostructurally crystallizing in space group P21/c, Z = 4, and of trigonal Ni2(NH3)9[Mo(CN)8] · 2 H2O (a = 955.1(1), c = 2326.7(7) pm, P31, Z = 3), X‐ray structure determinations were performed at 168 resp. 153 K. The [Mo(CN)8]4– groups of the three compounds, prepared at about 275 K and easily decomposing, show but slightly distorted dodecahedral coordination (mean distances Mo–C: 216.3, 215.4 and 216.1 pm). Within the monoclinic complexes the anions twodimensionally form cyano bridges to the ammin cations [M(NH3)4]2+ and are connected with the resulting [MN6] octahedra (Co–N: 215.1 pm, Ni–N: 209.8 pm) into strongly puckered layers. The trigonal complex exhibits a chain structure, as one [Ni(NH3)5]2+ cation is only bound as terminal octahedron (Ni–N: 212.0 pm). Details and the influence of hydrogen bridges are discussed.  相似文献   

14.
Complexing processes in MII-N-diisopropoxythiophosphorylthiobenzamide binary systems (M = Co, Ni, Cu) in metal(II) hexacyanoferrate(II) gelatin-immobilized matrices upon contact with aqueous–alkaline (pH = 12.0 ± 0.1) solutions of organic compounds have been studied. It has been shown that, in CoII and CuII, the initial act of complexing involves destruction of the CoII and CuII hexacyanoferrates(II) by OH ions, leading to formation of the corresponding hydroxides which react with the ligand indicated. In the both systems, successive addition of two ligand molecules per M(OH)2 fragment occurs and [MB(OH)(OH2)] and [MB2] coordination compounds are formed (B-a singly deprotonated ligand form). In the NiII-N-diisopropoxythiophosphorylthiobenzamide system, the formation of three complexes, (Ni2BOH)2[Fe(CN)6], [NiB(OH)(OH2)] and [NiB2] occurs.  相似文献   

15.

The reaction of MX2 (M = Co(II), Ni(II); X = Cl, Br) with 2-aminopyrimidine in aqueous acid yields compounds [(2-apmH)2MX4], (2-apmH)2[MX4], or (2-apmH2) [MX2(H2O)4]X2 (2-apmH = 2-aminopyrimidinium; 2-apmH2 = 2-aminopyrimidinium(2+)). All compounds have been characterized by single crystal X-ray diffraction. The compounds [(2-apmH)2MX4] with M = Co, X = Cl (1); M = Ni, X = Cl (3); and M = Ni, X = Br (4) are isomorphous and crystallize as nearly square planar MX4 units with the 2-apmH cations coordinated in the axial sites through the unprotonated ring nitrogen. (2-ApmH)2[CoBr4] (2) crystallizes as the salt with a nearly tetrahedral CuBr4 2- anion. (2-ApmH2)[NiBr2(H2O)4]Br2 (5) forms as a cocrystal of the neutral, six-coordinate nickel complex and (2-ampH2)Br2, stabilized by extensive hydrogen bonding. Crystal data (1): monoclinic, P21/c, a = 7.540(4), b = 12.954(4), c = 7.277(3) Å, β = 110.09(6), V = 667.4(5) Å3, Z = 2, Dcalc = 1.955 Mg/m3, μ = 2.079 mm-1, R = 0.0501 for [|I|≥2(I)]. For (2): triclinic, P-1, a = 7.720(2), b = 7.916(2), c = 14.797(3) Å, α = 97.264(3), β = 104.788(3), γ = 105.171(3)°, V = 825.3(3) Å3, Z = 2, Dcalc = 2.296 Mg/m3, μ = 10.715 mm-1, R = 0.0308 for [|I|≥2(I)]. For (3): monoclinic, P21/c, a = 7.595(3), b = 12.891(4), c = 7.204(3) Å, β = 111.07(3)°, V = 658.2 Å3, Z = 2, Dcalc = 1.982 Mg/m3, μ = 2.279 mm-1, R = 0.0552 for [|I|≥2(I)]. For (4): monoclinic, P21/c, a = 7.840(2), b = 13.358(4), c = 7.518(2) Å, β = 110.923(3)°, V = 938.6(3) Å3, Z = 2, Dcalc = 2.577 Mg/m3, μ = 12.18 mm-1, R = 0.0280 for [|I|≥2(I)]. For (5): orthorhombic, Pnma, a = 16.776(6), b = 11.943(4), c = 7.079(3) Å, V = 1418.2(9) Å3, Z = 4, Dcalc = 2.564 Mg/m3, μ = 12.639 mm-1, R = 0.0381 for [|I|≥2σ(I)].  相似文献   

16.
17.
Derivatives of the Fluorite Type: [Fe(NH3)6][TaF6]2 and [Ni(NH3)6][TaF6]2 Light blue single crystals of [Fe(NH3)6][TaF6]2 and [Ni(NH3)6][TaF6]2 are obtained from 36 : 1 : 6 molar mixtures of (NH4)F, iron/nickel and tantalum powders, respectively, in sealed Monel metal ampoules at 400 °C. They both crystallize isotypic with [Co(NH3)6][PF6]2 (cubic, Fm-3m, Z = 4, a = 1259.0(2)/1260.4(2) pm) in a structure that can be derived from the basic fluorite-type of structure according to [Ca][F]2≡[Fe(NH3)6][TaF6]2, for example.  相似文献   

18.
在pH 2~3的溶液中,低浓度Fe^2+与K3[Fe(CN)6]反应产生的蓝色沉淀为近似真溶液,最大吸收波长为710 nm.形成的近似真溶液吸光度随静置时间变化而逐渐变大,30 min后吸光度变化缓慢.K3[Fe(CN)6]过量时,Fe^2+浓度与吸光度呈很好的线性关系.Fe^2+浓度较大时,易形成絮状沉淀.在pH 2~3的Fe^3+-K3[Fe(CN)6]体系中,加入Vc能将Fe^3+还原成Fe^2+,进而与K3[Fe(CN)6]反应,30 min后测定蓝色拟真溶液的吸光度,Vc的量与溶液的吸光度同样有很好的线性关系,线性相关系数R〉0.999,检出限为0.94μg.  相似文献   

19.
20.
高氯酸碳酰肼钴、高氯酸碳酰肼镍快速热分解反应动力学   总被引:2,自引:0,他引:2  
利用温度跃升傅立叶变换红外原位分析技术(T-jump/FTIR)对高氯酸碳酰肼钴和高氯酸碳酰肼镍的快速热分解反应进行了研究. 研究表明, 目标化合物快速热分解逸出的主要气相产物是CO2, H2O, HCN, HNCO和HONO. 借助快速升温过程中Pt金属丝的控制电压变化曲线得到剧烈放热峰的诱导出现时间tx, 利用tx值计算了两种目标化合物的快速热分解动力学参数. 在0.1 MPa氩气气氛, 613~653 K的实验温度范围内, 高氯酸碳酰肼钴的活化能Ea=39.42 kJ•mol−1, lnA=5.93; 在0.1 MPa氩气气氛, 618~678 K的实验温度范围内, 高氯酸碳酰肼镍的活化能Ea=60.44 kJ•mol−1, lnA=9.40.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号