首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of antibiotics on the microbial cells and concentration of antibiotics in the human body is essential for the effective use of antimicrobial therapy. The capillary isoelectric focusing is a suitable technique for the separation and the detection of bacteria, and amphoteric substances from nature. However, the determination of isoelectric points of ampholytic antibiotics by conventional techniques is time consuming. For this reason, capillary isoelectric focusing seems to be appropriate as a simple and reliable way for establishing them. The separation conditions for the capillary isoelectric focusing of selected ampholytic antibiotics with known isoelectric points and pK as, ampicillin (pI 4.9), ciprofloxacin (pI 7.4), ofloxacin (pI 7.1), tetracycline (pI 5.4), tigecycline (pI 9.7), and vancomycin (pI 8.1), were found and optimized in the suitable pH ranges pH 2.0–5.3, 2.0–9.6, and 9.0–10.4. The established values of isoelectric points correspond with those found in the literature except tigecycline. Its pI was not found in the literature. As an example of a possible procedure for direct detection of both ampholytic antibiotics and bacteria, Staphylococcus epidermidis, in the presence of culture media or whole human blood, was found. The changes of the bacterial cells after their treatment with tetracycline were confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Capillary isoelectric focusing allows the fast and simple determination of isoelectric points of relevant antibiotics, their quantification from the environment, as well as studying their effectiveness on microorganisms in biological samples. Graphical Abstract
?  相似文献   

2.
We report on a novel electrochemiluminescent (ECL) immunoassay for the ultrasensitive determination of morphine by making use of a gold electrode which was modified with a nanocomposite film containing self-assembled polyamidoamine (PAMAM) CdS quantum dots and electrodeposited gold nanoparticles (Au-NPs). The highly uniform and well-dispersed quantum dots were capped with PAMAM dendrimers. Due to the synergistic effect of the modified quantum dots and the electrodeposited Au-NPs, the ECL response is dramatically enhanced. Under optimal experimental conditions, the immunoreaction between morphine and anti-morphine antibody resulted in a decrease of the ECL signal because of steric hindrance. The calibration plot is linear in the morphine concentration range from 0.2 to 180 ng?mL?1, with a detection limit as low as 67 pg?mL?1. The sensor was successfully applied to the determination of morphine in blood plasma. This kind of assay is expected to pave new avenues in label-free drug assays.
Figure
?  相似文献   

3.
A non-denaturating isoelectric focusing (ND-IEF) gel electrophoresis protocol has been developed to study and identify uranium (U)–protein complexes with laser ablation–inductively coupled plasma mass spectrometry (LA-ICP MS) and electrospray ionization mass spectrometry (ESI-MS). The ND-IEF-LA-ICP MS methodology set-up was initiated using in vitro U–protein complex standards (i.e., U–bovine serum albumin and U–transferrin) allowing the assessment of U recovery to 64.4?±?0.4 %. This methodology enabled the quantification of U–protein complexes at 9.03?±?0.23, 15.27?±?0.36, and 177.31?±?25.51 nmol U L?1 in digestive gland cytosols of the crayfish, Procambarus clarkii, exposed respectively to 0, 0.12, and 2.5 μmol of waterborne depleted U L?1 during 10 days. ND-IEF-LA-ICP MS limit of detection was 19.3 pmol U L?1. Elemental ICP MS signals obtained both in ND-IEF electropherograms and in size exclusion chromatograms of in vivo U–protein complexes revealed interactions between U- and Fe- and Cu-proteins. Moreover, three proteins (hemocyanin, pseudohemocyanin-2, and arginine kinase) out of 42 were identified as potential uranium targets in waterborne-exposed crayfish cytosols by microbore reversed phase chromatography coupled to molecular mass spectrometry (µRPC-ESI-MS/MS) after ND-IEF separation.
Figure
The paper presents the development of a non-denaturating protocol for the separation of uranium-protein complexes by isoelectric focusing gel electrophoresis (ND-IEF) before their quantitative detection by Laser Ablation coupled to Inductively Coupled Plasma Mass Spectrometry. Potential protein targets of uranium are subsequently identified by liquid chromatography - electrospray mass spectrometry  相似文献   

4.
We present a modified glassy carbon electrode as a sensing platform for glucose. It is based on a composite film prepared from Ni(II) ion, quercetin and graphene. The sensor was characterized by cyclic voltammetry. The electron transfer coefficient, reaction rate constant and catalytic rate constant were determined and found to be 0.53, 5.4?s?1 and 2.93?×?103?M?1 s?1, respectively. The catalytic current depends linearly on the concentration of glucose in the range from 3 to 900???M, with a detection limit of 0.5???M (at an S/R of 3). The sensor exhibits good reproducibility, stability, fast response, and high sensitivity.
Figure
Cyclic voltammograms of Ni(II)-Qu/Gr/GCE in 0.1?M NaOH solution at various scan rates (from inner to outer): 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0?V·s?1. Plot of I p versus ??1/2 and E p versus log??.  相似文献   

5.
This work introduces a liquid chromatography–electrospray ionization-hybrid quadrupole/time-of-flight mass spectrometry (LC-ESI-QTOF-MS)-based method for qualitative and quantitative analysis of poly(amidoamine) (PAMAM) dendrimers of generations 0 to 3 in an aqueous matrix. The multiple charging of PAMAM dendrimers generated by means of ESI has provided key advantages in dendrimer identification by assignation of charge state through high resolution of isotopic clusters. Isotopic distribution in function of abundance of isotopes 12C and 13C yielded valuable and complementarity data for confident characterization. A mass accuracy below 3.8 ppm for the most abundant isotopes (diagnostic ions) provided unambiguous identification of PAMAM dendrimers. Validation of the LC-ESI-QTOF-MS method and matrix effect evaluation enabled reliable and reproducible quantification. The validation parameters, limits of quantification in the range of 0.012 to 1.73 μM, depending on the generation, good linear range (R?>?0.996), repeatability (RSD?<?13.4 %), and reproducibility (RSD?<?10.9 %) demonstrated the suitability of the method for the quantification of dendrimers in aqueous matrices (water and wastewater). The added selectivity, achieved by multicharge phenomena, represents a clear advantage in screening aqueous mixtures due to the fact that the matrix had no significant effect on ionization, with what is evidenced by an absence of sensitivity loss in most generations of PAMAM dendrimers.
Fig
Liquid chromatography–electrospray ionization-hybrid quadrupole/time of flight mass spectrometry (LC-ESI-QTOF-MS) based method for qualitative and quantitative analysis of PAMAM dendrimers in aqueous matrix  相似文献   

6.
Samaresh Ghosh  Zhu Chen 《Tetrahedron》2005,61(11):2889-2896
A new series of novel polyamidoamine (PAMAM) dendrimers 4, 5 and 6 possessing azobenzene units specifically at the core were prepared and their reversible trans/cis photoisomerization properties were studied. PAMAM dendritic wedges as well as azo-based PAMAM dendrimers were fully characterized by means of FT-IR, NMR (1H and 13C), mass spectrometry (MALDI-MS), thermogravimetric and elemental analysis.  相似文献   

7.
Poly(ethyleneimine) (PEI) dendrimers up to the third generation (G3) were prepared by a divergent synthesis method from an ethylenediamine (EDA) core. The amine terminals were bonded with vinylbromide by a Michael addition reaction. Then, the bromide terminals were converted to amine groups using a Gabriel amine synthesis method. PEI dendrimers displayed pH-dependent luminescence, and their emission intensities at pH 6 increased over time. Fluorescence intensities also increased with increasing dendrimer generation from G1 to G3. Air-bubbling in aqueous solutions of dendrimers made to incorporate detectable amount of oxygen in dendrimers. EDA also behaved similarly in luminescence and oxygen incorporation.
Figure
Synthesis and Characterization of Poly(ethyleneimine) Dendrimers  相似文献   

8.
We have modified gold nanoparticles (AuNPs) with triazole acetamide to obtain a material for the sensitive and selective colorimetric determination of iodide. The functionalized AuNPs were prepared by a reductive single chemical step using a Cu(I)-catalyzed click reaction. The presence of iodide ions induces the aggregation of these AuNPs and results in a color change from wine-red to purple. The iodide-induced aggregation can be detected visually with bare eyes, but also by photometry. The detection limit is as low as 15 nM. The method displays excellent selectivity for iodide over other anions due to the selective interaction with the amido groups of the triazole. The method was applied to the determination of iodide in spiked lake waters.
Figure
New triazole acetamide functionalized gold nanoparticles (ATTP-AuNPs) for sensitive and selective colorimetric detection of I? were developed. ATTP-AuNPs showed excellent selectivity toward I? due to the interaction between the amide groups of ATTP and I?.  相似文献   

9.
pH-sensitive poly(methacrylic acid)-block-hydroxyl-terminated polybutadiene-block-poly(methacrylic acid) block copolymers were synthesized by atom transfer radical polymerization of t-butyl methacrylate and follow-up acidolysis. The copolymers can spontaneously assemble into stable and nearly spherical micelle aggregates in aqueous solution, with hydrodynamic diameters (D h ) from 51 to 92 nm and critical micelle concentration of 3.90–7.76 mg L?1. Zeta potentials were found to be increased with increasing (monomer)/(initiator) molar ratios. A pH-dependent phase behavior is produced at approximately 5.4–5.6, as determined by D h and I 335/I 332 fluorescence intensity ratios. The in vitro camptothecin (CPT) release was compositional and pH dependent, and the cumulative CPT release below pH 7.2 was higher than that in pH 7.4. They could inhibit the premature burst CPT release. The copolymer micelles were low in cytotoxicity even at a micellar concentration of 800 mg L?1, and therefore they may be used as potential drug-delivery carriers.
Figure
?  相似文献   

10.
The utilization of dendrimer calibrants as an alternative to peptides and proteins for high mass calibration is explored. These synthetic macromolecules exhibited a number of attractive advantages, including exceptional shelf-lives, broad compatibility with a wide range of matrices and solvents, and evenly spaced calibration masses across the mass range examined, 700–30,000 u. The exceptional purity of these dendrimers and the technical simplicity of this calibration platform validate their broad relevance for high molecular weight mass spectrometry.
Figure
?  相似文献   

11.
A simple, cheap, and nonpolluting method was developed for the cloud point extraction of gold (Au) and palladium (Pd). It is based on the complexation reaction of Au and Pd with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) and micelle mediated extraction of the complex using the non-ionic surfactant poly(ethylene glycol) mono-p-nonylphenyl ether (PONPE 7.5). Under the optimized experimental conditions, the enrichment factors are 16 and 17 for Au and Pd, respectively, for 15?mL of preconcentrated solution. The limits of detection are 3.8???g?L?1 and 1.8???g?L?1 for Au and Pd, respectively. The relative standard deviations are 1.4% for Au and 0.6% for Pd (n?=?11). The method was successfully applied to the determination of Au and Pd in certified reference materials and mine samples.
Figure
CPE of gold(III) and palladium(II)  相似文献   

12.
During their travel inside a traveling wave ion mobility cell (TW IMS), ions are susceptible to heating because of the presence of high intensity electric fields. Here, we report effective temperatures T eff,vib obtained at the injection and inside the mobility cell of a SYNAPT G2 HDMS spectrometer for different probe ions: benzylpyridinium ions and leucine enkephalin. Using standard parameter sets, we obtained a temperature of ~800 K at injection and 728?±?2 K into the IMS cell for p-methoxybenzylpyridinium. We found that T eff,vib inside the cell was dependent on the separation parameters and on the nature of the analyte. While the mean energy of the Boltzmann distributions increases with ion size, the corresponding temperature decreases because of increasing numbers of vibrational normal modes. We also investigated conformational rearrangements of 7+ ions of cytochrome c and reveal isomerization of the most compact structure, therefore highlighting the effects of weak heating on the gas-phase structure of biologically relevant ions.
Figure
?  相似文献   

13.
This work reported an efficient electrochemical treatment for drinking water disinfection using a pyrolytic graphite electrode modified with ferrocenyl tethered poly(amidoamine) dendrimers–multiwalled carbon nanotubes–chitosan nanocomposite. The influence parameters of electrochemical disinfection of Escherichia coli and Staphylococcus aureus, such as applied potential and sterilization time, were investigated. Further investigation indicated that almost all (99.99 %) of the initial bacteria were killed after applying a low potential of 0.4 V for 10 min. During the electrochemical disinfection process, the oxidized form of ferrocene was formed on electrode, which played a key role in the disinfection towards E. coli and S. aureus. Hence, the proposed method may provide potential application for the disinfection of drinking water.
Figure
Schematic diagram of electrochemical disinfection progress  相似文献   

14.
A method was developed for determination of inorganic anions, including nitrite (NO 2 ? ), nitrate (NO 3 ? ), bromide (Br?), and iodide (I?), in seawater by ion chromatography (IC). The IC system used two dilauryldimethylammonium bromide (DDAB)-coated monolithic ODS columns (50?×?4.6?mm i.d. and 100?×?4.6?mm i.d.) connected in series for separation of the ions. Aqueous NaCl (0.5?mol/L; flow rate, 3?mL/min) containing 5?mmol/L phosphate buffer (pH 5) was used as the eluent, and detection was with a UV detector at 225?nm. The monolithic ODS columns were coated and equilibrated with a 1-mmol/L DDAB solution (in H2O/methanol, 90:10 v/v). The hydrophilic ions (NO 2 ? , NO 3 ? , and Br?) were separated within 3?min and the retention time of I? was 16?min. No interferences from matrix ions, such as chloride and sulfate ions, were observed in 35?‰ artificial seawater. The detection limits were 0.6?μg/L for NO 2 ? , 1.1?μg/L for NO 3 ? , 70?μg/L for Br?, and 1.6?μg/L for I? with a 200-μL sample injection. The performance of the coated columns was maintained without addition of DDAB in the eluent. The IC system was successfully applied to real seawater samples with recovery rates of 94–108?% for all ions.
Figure
The hydrophilic ions (NO 2 ? , NO 3 ? , and Br?) and I? in seawater was determined by a single run using the IC system consisting of two dilauryldimethylammonium bromide (DDAB)-coated monolithic ODS columns (50?×?4.6?mm i.d. and 100?×?4.6?mm i.d.) connected in series, NaCl (0.5?mol/L; flow rate, 3?mL/min) containing 5?mmol/L phosphate buffer (pH 5) as the eluent, and a UV detector (225?nm). No interferences from matrix ions, such as chloride and sulfate ions, were observed in 35?‰ artificial and real seawaters.  相似文献   

15.
We describe a molecularly imprinted polymer (MIP) for the solid-phase extraction of the skin protectant allantoin. The MIP was deposited on the surface of monodisperse silica microspheres possessing acroyl groups on the surface (MH-SiO2). The resulting MIP microspheres (MH-SiO2@MIP) showed a 3.4-fold higher adsorption capacity and a 1.9-fold better selectivity for allantoin than the respective non-imprinted polymer (MH-SiO2@NIP). The monolayer adsorption capacities of the MH-SiO2@MIP and the MH-SiO2@NIP were calculated with the help of the Langmuir model and found to be 6.8 and 1.9 mg?g?1, respectively. Adsorption kinetics fit a pseudo-second order rate mechanism, with an initial adsorption rate of 1.44 for the MH-SiO2@MIP, and of 0.07 mg?g?1?min?1 for the MH-SiO2@NIP. The material can be regenerated, and its adsorption capacity for allantoin remains stable for at least five regeneration cycles. It was successfully used as a sorbent for the selective solid-phase extraction of allantoin from Rhizoma dioscoreae.
Figure
A molecularly imprinted polymer for the selective separation of allantoin was developed. It was successfully used as a sorbent for the selective solid-phase extraction of allantoin from Rhizoma dioscoreae.  相似文献   

16.
Two compounds, 7,13,16,21,24-hexaoxa-1,10-diazoniabicyclo[8.8.8]hexacosane bis(tribromide) and bis(bromodiiodide) — [H2(Crypt-222)]2+·2Br 3 ? (I) and [H2(Crypt-222)]2+·1.45(BrI2)?·0.4(Br2I)?·0.15 I 3 ? (II) — are prepared and characterized by single crystal XRD; the refinement of the second compound was more accurate. Isomorphous monoclinic structures (I, space group C2/c, Z = 4, a = 12.090, b = 15.833 Å, c = 15.732 Å, β = 95.83°; II, a = 12.548 Å, b = 16.417 Å, c = 15.748 Å, β = 94.53°) are solved by a direct method and refined in the anisotropic full-matrix approximation to R = 0.057 (I) and 0.044 (II) using all 2635 (I) and 2852 (II) measured independent reflections (automated CAD-4 diffractometer, λMoK α). In the structures of I and II one of the trihalide anions sits at the inversion center i(000), and the second trihalide anion and the dication [H2(Crypt-222)]2+ are situated at crystallographic axis 2. In the structure of II iodine is located in the center of trihalide anions, while the terminal atoms are disordered and are represented by a statistical combination of iodine and bromine atoms.  相似文献   

17.
A reagentless d-sorbitol biosensor based on NAD-dependent d-sorbitol dehydrogenase (DSDH) immobilized in a sol–gel carbon nanotubes–poly(methylene green) composite has been developed. It was prepared by durably immobilizing the NAD+ cofactor with DSDH in a sol–gel thin film on the surface of carbon nanotubes functionalized with poly(methylene green). This device enables selective determination of d-sorbitol at 0.2 V with a sensitivity of 8.7?μA?mmol?1?L?cm?2 and a detection limit of 0.11 mmol?L?1. Moreover, this biosensor has excellent operational stability upon continuous use in hydrodynamic conditions.
Figure
Reagentless D-sorbitol biosensor based on NAD-dependent D-sorbitol dehydrogenase (DSDH) immobilized in sol-gel/carbon nanotubes/poly(methylene green) composite  相似文献   

18.
A new amperometric immunosensor for 2,4,6-trinitrotoluene based on the working principle of competitive enzyme-linked immunosorbent assay was developed and characterised. An electrodeposited nanogold substrate was functionalised by deposition of self-assembled monolayers of 2-aminoethanethiol as linkers for the subsequent immobilisation of polyamidoaminic dendrimers. Our approach makes use of those dendrimers to anchor a trinitrobenzene-ovalbumin conjugate on the electrode surface. The immunosensor was tested and validated for the determination of 2,4,6-trinitrotoluene showing high selectivity with respect to other nitroaromatic compounds, a limit of detection of 4.8 ng/mL and a limit of quantitation of 6 ng/mL. The immunosensor was tested for the quantification of the analyte in spiked soils and in a real sample of post-blast soil, evidencing a good recovery rate (113 %).
Figure
Setup of sensor and immunoassay for TNT  相似文献   

19.
Iron and aluminium are the two most abundant metals on the Earth's crust, but they display quite different biogeochemical properties. While iron is essential to many biological processes, aluminium has not been found to have any biological function at all. In environmental studies, iron has been studied in detail for its limiting role in the bioproductivity of high nutrient, low carbon oceanic zones, while aluminium is routinely used as a reference of crustal contributions to atmospheric deposition archives including peat bogs, lacustrine and marine sediments and ice sheets and glaciers. We report here the development of a flow injection analysis technique, which has been optimised for the simultaneous determination of soluble iron and aluminium in polar ice cores. Iron was determined by its catalytic role in the reduction of N,N-dimethyl-p-phenylenediamene (DPD) to a semiquinonic form (DPDQ) and subsequent absorption spectroscopy at 514 nm. Aluminium was determined by spectroscopic analysis of an aluminium–lumogallion complex that exhibits fluorescence at 560 nm. These techniques have been applied to a section of Greenland ice dated to 1729–1733?ad and indicate that volcanism is a source of highly soluble aluminium and iron.
Figure
The micro volume flow cell used in the continuous flow detections of iron illuminated by a 525-nm LED light source.  相似文献   

20.
Catecholamines play essential roles in several physiological processes in vertebrates as well as in invertebrates. While several studies have shown the presence of these substances in surface water invertebrates, their occurrence in groundwater fauna is unproven. In the present study, the presence of different catecholamines (i.e., noradrenaline, adrenaline, and dopamine) in individual specimens of groundwater amphipods of the genus Niphargus (mostly Niphargus inopinatus) was investigated via two independent analytical methods: HPLC/EcD and UPLC/TOF-MS. Mean values for catecholamine levels were 533 pg mg?1 fresh weight for noradrenaline, 314 pg mg?1 for adrenaline, and 16.4 ng mg?1 for dopamine. The optimized protocol allowed the detection of CAs in single organisms of less than 1 mg fresh weight. Catecholamine concentration patterns in groundwater invertebrates are briefly discussed here with respect to their evolutionary adaptation to an environmentally stable, energy-poor habitat.
Figure
Niphargus inopinatus SCHELLENBERG (photo: Günter Teichmann,Helmholtz Center Munich)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号