首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the current energetic context (increasing consumption of vehicle fuels, greenhouse gas emission etc.) government policies lead to mandatory introduction in fossil fuels of fuels resulting from renewable sources of energy such as biomass. Blending of fatty acid alkyl esters from vegetable oils (also known as biodiesel) with conventional diesel fuel is one of the solutions technologically available; B5 blends (up to 5%w/w esters in fossil fuel) are marketed over Europe. Therefore, for quality control as well as for forensic reasons, it is of major importance to monitor the biodiesel origin (i.e. the fatty acid ester distribution) and its content when it is blend with petroleum diesel. This paper reports a comprehensive two-dimensional gas chromatography (GC x GC) method that was developed for the individual quantitation of fatty acid esters in middle distillates matrices. Several first and the second dimension columns have been investigated and their performances to achieve (i) a group type separation of hydrocarbons and (ii) individual identification and quantitation of fatty acid ester blend with diesel are reported and discussed. Finally, comparison of quantitative GC x GC results with reference methods demonstrates the benefits of GC x GC approach which enables fast and reliable individual quantitation of fatty acid esters in one single run. Results show that under developed chromatographic conditions, quantitative group type analysis of hydrocarbons is also possible, meaning that simultaneous quantification of hydrocarbons and fatty acid esters can be achieved in one single run.  相似文献   

2.
The bacteria fatty acid profile has been extensively studied for taxonomic classification purposes, since bacteria, in general, contain particular and rare fatty acids, compared with animal and plant tissues. As for any real‐world sample type, the development of rapid and reliable methods for (i) sample identification (in this case, bacterium type), and (ii) constituent identification (in this instance, the fatty acid profile) is desirable. In this research, a half‐an‐hour procedure, to analyze bacteria, was developed: a 2‐min one‐step sample preparation step was followed by a relatively fast comprehensive 2D GC‐MS separation (25 min). Furthermore, dedicated MS libraries were constructed for the identification of bacteria and fatty acids. Finally, data processing, only qualitative at this stage, was carried out with the support of a novel comprehensive 2D GC software.  相似文献   

3.
Most lipids are a complex mixture of classes of compounds such as fatty acids, fatty alcohols, diols, sterols and hydroxy acids. In this study, the suitability of comprehensive two-dimensional gas chromatography coupled to a time-of-light mass spectrometer is studied for lipid characterization in complex samples. With lanolin, a refined wool wax, as test sample, it is demonstrated that combined methylation plus silylation is the preferred derivatization procedure to achieve (i) high-quality GC x GC separation and (ii) easily recognizable ordered structures in lipid analysis. Optimization of the GC x GC column combination, the influence of the temperature programme on the quality of the separation, and the potential and limitations of automated TOF-MS-based identification are discussed. The combined power of a 2D separation, ordered structures and MS detection is illustrated by the identification of several minor sample constituents.  相似文献   

4.
Comprehensive two-dimensional gas chromatography (GC x GC) with time-of-flight mass spectrometry detection is used to profile the fatty acid composition of whole/intact aquatic microorganisms such as the common fresh water green algae Scenedesmus acutus and the filamentous cyanobacterium Limnothrix sp. strain MRI without any sample preparation steps. It is shown that the technique can be useful in the identification of lipid markers in food-web as well as environmental studies. For instance, new mono- and diunsaturated fatty acids were found in the C(16) and C(18) regions of the green algae S. acutus and the filamentous cyanobacterium Limnothrix sp. strain MRI samples. These fatty acids have not, to our knowledge, been detected in the conventional one-dimensional (1D) GC analysis of these species due to either co-elution and/or their presence in low amounts in the sample matrix. In GC x GC, all congeners of the fatty acids in these microorganisms could be detected and identified due to the increased analyte detectability and ordered structures in the two-dimensional separation space. The combination of direct thermal desorption (DTD)-GC x GC-time-of-flight mass spectrometry (ToF-MS) promises to be an excellent tool for a more accurate profiling of biological samples and can therefore be very useful in lipid biomarker research as well as food-web and ecological studies.  相似文献   

5.
The present research is focused on the use of comprehensive 2-D GC (GC x GC) for the elucidation of the human plasma fatty acid (FA) profile. The enhanced sensitivity, increased separation power and the formation of group-type patterns provided by GC x GC enabled the identification and quantification of a high number of both well known and unexpected FAs, for a total of 65 components. Peak assignment was, in most cases, supported by using pure standard compounds. The results attained demonstrated the usefulness of the multidimensional GC method in this fundamental field of research.  相似文献   

6.
Beens J  Brinkman UA 《The Analyst》2005,130(2):123-127
Comprehensive two-dimensional gas chromatography (GC x GC) was introduced about a decade ago and is, today, rapidly become a powerful and widely applicable technique for the characterisation and analysis of a variety of complex samples. GC x GC provides structurally ordered chromatograms in the 2D plane, and features an impressive peak capacity. Combining GC x GC and time-of-flight mass spectrometry (ToFMS), with its fast acquisition rates and excellent deconvolution potential, has been an important step forward which enables identification and identity confirmation of large numbers of target analytes and unknowns in one run. Up until now, some 150 papers have been published, fish and food, environmental and air analysis. Polyhalogenated aromatics and other priority pollutants, flavours and fragrances, fatty acid methyl esters and essential oils, are among the classes of compounds which frequently receive attention. In summary, GC x GC is increasingly being recognised as the separation technique of choice in problem areas.  相似文献   

7.
Summary Trimethylsulfonium hydroxide (TMSH) can convert fatty acids into the corresponding fatty acid methyl esters (FAMEs) in a single step. These fatty acids may also be bound in biomolecules such as phospholipids and/or glycerides. Complex mixtures of saturated and unsaturated FAMEs which may contain hydroxy and cylopropyl groups are obtained by trans-esterification; they can easily be separated in most cases by capillary GC. When FAMEs are generated from different microorganisms e.g. bacteria the patterns of the chromatograms are characteristic. Examples of characteristic patterns of bacteria with different cell wall structures are shown. The described method of transesterification can also be applied directly to blood serum without sophisticated sample pretreatment. The profiles of the chromatograms match well those described in the literature obtained by other methods of trans-esterification or sample preparation.  相似文献   

8.
Comprehensive gas chromatography (GC x GC) is an adequate methodology for the separation and identification of very complex samples. It is based on the coupling of two capillary columns that each give a different but substantial contribution to the unprecedented resolving power of this technique. The 2D space chromatograms that derive from GC x GC analysis have great potential for identification. This is due to the fact that the contour plot positions, pinpointed by two retention time coordinates, give characteristic patterns for specific families of compounds that can be mathematically translated. This investigation concerned the application of this principle to fatty acid methyl esters that were grouped on an equal double bond number basis. The ester samples were derived from various lipids and all underwent bidimensional analysis on two sets of columns. Peak attribution was supported by mass spectra, linear retention indices and information reported in the literature.  相似文献   

9.
In this work the development of a comprehensive 2-D GC flame ionization detection (GC x GC FID) method for biodiesel fuels is reported. This method is used for the analysis of fatty acid methyl esters (FAMEs) in both biodiesel (B100) and biodiesel blend (B5) samples. The separation of FAME was based on component boiling point in the first dimension and polarity in the second dimension by using a BPX5/BP20 column set to provide a measure of 'orthogonality' in the 2-D space. Here the columns are coupled with a cryogenic modulator operating in a novel temperature programmed mode (T(M)) whereby the cryotrap is progressively incremented in temperature as the oven temperature is increased. The final method employs eight cryotrap temperature settings. The developed GC x GC method is able to successfully characterize and identify both B100 and B5 FAME components, which are produced from a variety of vegetable oils, animal fats and waste cooking oils, with high precision. The method is capable of analysing FAME with carbon numbers C4-C24, and is particularly suitable to characterize various types of biodiesel, making it possible to differentiate the origin and type of FAME used in the biodiesel samples.  相似文献   

10.
After a successful off-line feasibility study, the automation of comprehensively coupled liquid chromatography and gas chromatography (LC x GC) has been studied. Important aspects to consider when developing automated LG x GC include the relative speeds of the two dimensions, the compatibility of the LC eluent (type and flow rate) with the GC dimension, and the column loadabilities. Because the GC separation is relatively slow, the LC instrument has to be operated in the stop-flow mode. Two interfaces for transferring large numbers of subsequent LC fractions to the GC were constructed: one based on a six-port switching valve, and one which uses a dual side-port syringe. Both interfaces were found to perform fully acceptably. The actual transfer of the LC fraction to the GC was realised using a standard split injector to vaporise the compounds and LC eluent. Gas phase splitting was applied to match LC mass load and GC column loadability. The standard deviations of the peak areas obtained in this way were better than 7% (n = 6). The reliability of the system was demonstrated by the problem-free analysis of large series of oil and fat samples, with the focus on both intact triglycerides and their fatty acid methyl esters (FAMEs). Finally, the hyphenation of the automated LC x GC system to a sensitive and rapid-scanning time-of-flight mass spectrometer was realised. By using LC x GC-ToF MS, the information density of the chromatograms could be improved even further, which allowed easy identification of individual compounds as well as compound groups.  相似文献   

11.
Comprehensive two-dimensional gas chromatography (GC × GC) offers an interesting tool for profiling bacterial fatty acids. Flow modulated GC × GC using a commercially available system was evaluated, different parameters such as column flows and modulation time were optimized. The method was tested on bacterial fatty acid methyl esters (BAMEs) from Stenotrophomonas maltophilia LMG 958T by using parallel flame ionization detector (FID)/mass spectrometry (MS). The results are compared to data obtained using a thermal modulated GC × GC system. The data show that flow modulated GC × GC-FID/MS method can be applied in a routine environment and offers interesting perspectives for chemotaxonomy of bacteria.  相似文献   

12.
A gas chromatographic (GC) method was developed for the determination of sucrose monoesters of fatty acids (mono-SuE) and sucrose acetate isobutyrate (SAIB) in food additive premixes. Mono-SuE and SAIB fractions were prepared by column chromatography with either a C8 or a silica gel solid-phase extraction column. The mono-SuE fraction was acetylated and applied to a wide-bore GC column (0.53 mm x 15 m) by splitless injection for determination. The SAIB fraction was applied to the GC column without derivatization. Gas chromatography/mass spectrometry was used to confirm the identity of GC peaks. The detection limits for mono-SuE and SAIB were 0.005 and 0.01%, respectively. Mono-SuE (C12, C14, C16, C18, and C18:1) and SAIB were found in commercial food additive premixes and some foods.  相似文献   

13.
The influence of culture medium additives foetal bovine serum (FBS), serum effective substitutes (SES) and human autologous serum on the fatty acid profile of KB-cells and human gingival keratinocytes was examined. The KB-cells were cultivated in RPMI medium added with FBS or SES and the gingival keratinocytes in D-MEM added with FBS or human autologous serum. Two days before the cells were prepared for gas chromatography (GC), the media were changed to serum- and antibiotic-free media. Whole fatty acids of the cells were analysed using GC and the fatty acid profiles were compared. KB-cells as well as gingival keratinocytes changed their fatty acid composition, according to the medium additive used. Significant differences were observed. In the case of KB-cells cultivated with SES the fatty acid changes suggest an increase of the membrane fluidity. Corresponding and significant differences were observed with gingival keratinocytes cultivated in medium added with human autologous serum: the membrane fluidity of the gingival keratinocytes was increased. It is supposed that an increased membrane fluidity caused by a different fatty acid spectrum of the host cell may relate to mechanisms of bacterial adhesion. Consequently, in vitro studies on invasion and adhesion of bacteria or virus are dependent on the medium used. Further analyses are necessary of the functional effects caused by differences in the content of specific FAs, especially with regard to the application of cultivated cells in the field of tissue engineering.  相似文献   

14.
Comprehensive two-dimensional gas chromatography utilising a semi-rotating cryogenic modulator was applied to the analysis of dietary milk derived fatty acids. Four column combinations were tested: two polar-nonpolar and two different nonpolarpolar column combinations. Best results were obtained with a nonpolar-polar column set, with narrow-bore (50 microm ID) Carbowax column as the second column. The GC x GC method clearly improved the separation efficiency of the fatty acids in comparison with one-dimensional GC analysis and proved to be suitable for the quantification of the analytes. The relative standard deviations (RSD) of the retention times in the first and second dimensions were on average 0.06% and 4.9%, respectively. The relative RSD for peak volumes was on average 2.9%.  相似文献   

15.
A novel column characterization test mixture is developed for use in comprehensive two-dimensional gas chromatography (GC x GC). This mixture has been named the "Phillips mix" in honor of the late professor John B. Phillips, the father of GC x GC. The mixture comprises a series of homologous compounds from structural groups that cover a volatility and polarity range that is similar to the Grob mix, and includes saturated hydrocarbons (alkanes), unsaturated hydrocarbons (alkenes and alkynes), carbonyls (ketones and aldehydes), primary alcohols, fatty acid methyl esters, alkyl ethers, carboxylic acids, aromatics, as well as other unique functional groups (such as amines, etc.). Similarly to the Grob mix in conventional one-dimensional GC, the Phillips mix can be used as a standardized test for performance characterization of GC x GC column sets. Unlike the Grob mix, however, the Phillips mix's most important use is as a practical guideline for column users. This paper addresses some qualitative aspects of the use of the Phillips mix through an investigation of the chromatographic fingerprints of two different GC x GC column combinations.  相似文献   

16.
The volatile composition of 20-year-old out-of-service creosote-treated railway wood sleepers was studied. The emitted volatile fraction was collected by means of dynamic purge-and-trap concentration at ambient temperature, and analyzed by comprehensive two-dimensional gas chromatography (GC x GC) hyphenated with mass spectrometric detection systems, using quadrupole (GC x GC/qMS) and time-of-flight (GC x GC/ToF-MS) mass analyzers and selective nitrogen-phosphorus detection (GC x GC-NPD). The analysis of mass spectrometry data and GC x GC retention time allowed the tentative identification of about 300 compounds based on spectrometric data and positioning of each compound in the GC x GC plot. Major important headspace components are polyaromatic hydrocarbons, phenols and benzene derivatives, hydrocarbons and heterocyclic compounds containing nitrogen, sulphur or oxygen atoms. Many of the reported compounds are listed as belonging to toxicological substance classes which have been related to harmful health effects. GC x GC provides greater speciation and evidence of composition heterogenicity of the sample than one-dimensional GC analysis, thus allowing to better demonstrate its potential toxicity. Data obtained by specific detection systems for N-heterocycles assisted mass data interpretation assignments. The enhanced separation power obtained after GC x GC compared to one-dimensional gas chromatography (1D-GC) together with spectral deconvolution and correlation with physical-chemical data, allowed the identification of complex isomer clusters, as demonstrated for alkylquinolines, and applied also to alkylphenols, alkylbenzenes and alkylnaphthalenes.  相似文献   

17.
Mass transfer from the first-dimension to the second-dimension column in comprehensive two-dimensional gas chromatography (GC x GC) is normally quantitative, which means that the peak areas produced by GC x GC are equal to those obtained in one-dimensional gas chromatography (GC). In view of this relationship, it was investigated whether normal GC calibration could be used to quantify compounds analysed by GC x GC. Quantification of polycyclic aromatic hydrocarbons (PAHs) in sediment was used as a test case. It was concluded that more laborious and time-consuming GC x GC area calibration can be replaced by GC area calibration if separation quality and quantity prerequisites are met.  相似文献   

18.
In common with all gas chromatography (GC) methods, comprehensive two-dimensional gas chromatography (GC x GC) has the potential to provide both qualitative and quantitative analysis. There are fundamental differences in the way one-dimensional (1D-GC) and GC x GC results are interpreted for these parameters. Since 1D-GC produces a single measured peak in the chromatogram, there is a single retention time, and associated with this a single peak response (either area or height). Peak area and height are related by peak width. GC x GC produces a series of modulated peaks at the detector. Thus, the peak metrics of retention, area and height for one component are now not simple single values for one peak, but rather are derived from the multiple peak distribution generated by the modulation process. The peak retention is interpreted in terms of two-dimensional coordinates in a retention plane. In this study, a brief background review to quantification in GC x GC is provided. Previous reviews cover aspects of quantitative GC x GC studies up to the year 2005, including different approaches to quantification, and reports of quantitative analysis with different detectors, for different compounds classes, and in different matrices. Other studies have developed chemometric approaches based on multivariate analysis to provide quantitative reporting of individual compounds. The coverage of the earlier reviews has been updated to include material that has been presented since 2005 and includes considerations of valve-based modulation. Recently the modulation ratio (M(R)) concept was proposed and intended to clarify the meaning of modulation number (n(M)) in GC x GC, which was shown to be a rather poorly defined parameter. Based on the prior studies that introduced this concept, the role of quantitative analysis is investigated here through calculation of the peak areas and peak area ratios of selected series of modulated peaks in GC x GC. The application of isotopically labelled reference compounds for polycyclic aromatic hydrocarbon (PAH) analysis is used here to develop the quantitative metric approach. It is shown that by selecting the two or three major modulated peaks for solutes and internal standards, comparing the response ratio with the sum of all modulated peaks and also with the reference non-modulated result, quantification is statistically equivalent. Thus, adequate quantitative analysis and calibration can be accomplished by using selected major modulated peaks for each compound. This may simplify quantitative interpretation of GC x GC data.  相似文献   

19.
Comprehensive two-dimensional gas chromatography (GC x GC) can reveal information on the composition of a sample in a way that cannot be done by one-dimensional GC (1D-GC). GC x GC also offers much greater control of chromatographic selectivity based on molecular structure. However, in spite of more than 15 years of claims of the ability of GC x GC to resolve an overwhelmingly larger number of peaks than 1D-GC, and in spite of the theoretically proven potential of GC x GC to have an order of magnitude larger peak capacity than 1D-GC, the peak capacity of currently practiced GC x GC does not generally exceed the peak capacity attainable from 1D-GC with the same analysis time and the same minimal detectable concentration (MDC). The methodology for comparing the peak capacity of GC x GC to 1D-GC is described. The comparison of the performance of GC x GC to 1D-GC shows that the modulator is the key bottleneck limiting the performance of existing GC x GC. To realize the full potential of GC x GC, duration of injection from a modulator into the second-dimension column should be reduced by an order of magnitude or more. Use of powerful data analysis techniques such as peak deconvolution in both dimensions can further increase resolving power of GC x GC.  相似文献   

20.
A comprehensive two-dimensional gas chromatography (GC x GC) instrument has been created by coupling a flow-switching modulator and a standard gas chromatograph. The instrument was used to characterize the aromatic composition of gasoline. The high-resolution separation produced by flow-switching GC x GC allowed gasoline aromatics to be fully resolved from saturated components. The aromatic compounds were further separated into groups having the same carbon number. A standard gasoline sample was analyzed to evaluate the quantitative accuracy and precision of this technique. The data show that flow-switching GC x GC produces results that are comparable to gas chromatography-mass spectrometry (GC-MS) and thermal modulation GC x GC. The simple, low-cost, and robust nature of flow-switching GC x GC makes it an ideal technique for the routine analysis of aromatic compounds in gasoline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号