首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 962 毫秒
1.
Broadband refocusing pulses for high-field NMR can be constructed with broadband 90× pulses from numerical optimization of Bloch simulations concatenated with their time and phase reversed transformations. This work describes the search for minimal duration 18-kHz modulation frequency constant amplitude refocusing pulses made in this manner for bandwidths of 40, 60 and 80 kHz. Variants optimized at multiple frequencies and with sine squared amplitude truncation also are described. The resulting pulses are expected to have immediate application especially for (13)C refocusing in multidimensional experiments.  相似文献   

2.
We propose a family of doubly compensated multiplicity-edited heteronuclear single quantum coherence (HSQC) pulse sequences. The key difference between our proposed sequences and the compensation of refocusing inefficiency with synchronized inversion sweeps (CRISIS)-HSQC experiments they are based on is that the conventional rectangular 180 degrees pulses on the proton channel in the latter have been replaced by the computer-optimized broadband inversion pulses (BIPs) with superior inversion performance as well as much improved tolerance to B(1) field inhomogeneity. Moreover, all adiabatic carbon 180 degrees pulses during the INEPT and reverse-INEPT periods in the CRISIS-HSQC sequences have also been replaced with the much shorter BIPs, while the adiabatic sweeps during the heteronuclear spin echo for multiplicity editing are kept in place in order to maintain the advantage of the CRISIS feature of the original sequences, namely J-independent refocusing of the one-bond (1)H--(13)C coupling constants. These modifications have also been implemented to the preservation of equivalent pathways (PEP)-HSQC experiments. We demonstrate through a detailed comparison that replacing the proton 180 degrees pulses with the BIPs provide additional sensitivity gain that can be mainly attributed to the improved tolerance to B(1) field inhomogeneity of the BIPs. The proposed sequences can be easily adapted for (19)F--(13)C correlations.  相似文献   

3.
We describe solid-state NMR homonuclear recoupling experiments at high magic-angle spinning (MAS) frequencies using the radio frequency-driven recoupling (RFDR) scheme. The effect of heteronuclear decoupling interference during RFDR recoupling at high spinning frequencies is investigated experimentally and via numerical simulations, resulting in the identification of optimal decoupling conditions. The effects of MAS frequency, RF field amplitude, bandwidth, and chemical shift offsets are examined. Most significantly, it is shown that broadband homonuclear correlation spectra can be efficiently obtained using RFDR without decoupling during the mixing period in fully protonated samples, thus considerably reducing the rf power requirements for acquisition of (13)C-(13)C correlation spectra. The utility of RFDR sans decoupling is demonstrated with broadband correlation spectra of a peptide and a model protein at high MAS frequencies and high magnetic field.  相似文献   

4.
A set of modified HSQC experiments designed for the study of 13C‐enriched small molecules is introduced. It includes an improved sensitivity‐enhanced HSQC experiment eliminating signal artifacts because of high‐order 13C magnetization terms generated at high 13C enrichment. A broadband homonuclear 13C decoupling sequence based on Zangger and Sterk's method simplifies the complex 13C–13C multiplet structure in the F1 dimension of HSQC. When recording spectra at high resolution, the combination with a multiple‐site modulation of the selective pulse outperforms the constant‐time HSQC in terms of sensitivity and reliability. Finally, two pulse sequences reintroducing selected JCC couplings with selective pulses facilitate their assignments and measurements either in the splitting of the resulting doublets or by modulation of the signal amplitude. A sample of uniformly 92% 13C‐enriched cholesterol is used as an example. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Compensation of refocusing inefficiency in a gHMBC experiment by replacing the rectangular pi pulse with a pair of adiabatic pulses with synchronized inversion sweep (CRISIS) significantly improves the performance of the gHMBC experiment. The CRISIS-gHMBC experiment retains the pure absorptive shapes in F1 and hence results in better lineshape and higher resolution than the current versions of magnitude mode gHMBC spectra. When used as a broadband experiment, CRISIS-gHMBC, owing to better refocusing efficiency of the adiabatic pulse pairs, gives improved performance across the 13C spectral width. Moreover, it is shown that CRISIS-gHMBC is a robust and improved alternative and when used along with the IMPRESS (Improved Resolution using Symmetrically Shifted pulses) technique further increases the sensitivity and resolution without additional experimental time. The IMPRESS-CRISIS combination is demonstrated for broadband gHMBC and band-selective gHMBC experiments. The ICbs-gHMBC [IMPRESS-CRISIS-band-selective gHMBC] experiment is an attractive and better alternative to individual band-selective gHMBC.  相似文献   

6.
A modified version of the attached proton test (APT) sequence for 13C spectral editing, which we call CRisis‐APT (CRAPT), is developed and tested on representative organic compounds. CRAPT incorporates 13C compensation for refocusing inefficiency with synchronized inversion sweeps (CRISIS) pulses in combination with 1H broadband inversion pulses to give improved compensation for variations in 1JCH along with improved refocusing efficiency. It is shown that CRAPT gives edited 13C spectra with only small losses in sensitivity (between 8% and 15% for strychnine, 1 , menthol, 2 , cholecalciferol, 3 , and isotachysterol, 4 ), compared with basic 13C spectra obtained on the same compounds. CRAPT also gives significantly better signal/noise than DEPTQ for nonprotonated carbons. Therefore, we conclude that CRAPT is an improvement over APT or DEPTQ or a combination of DEPT135 with a full 13C spectrum for routine 13C spectral editing of organic compounds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Owing to the recent developments concerning residual dipolar couplings (RDCs), the interest in methods for the accurate determination of coupling constants is renascenting. We intended to use the J-modulated ADEQUATE experiment by K?vér et al. for the measurement of (13)C - (13)C coupling constants at natural abundance. The use of adiabatic composite chirp pulses instead of the conventional 180 degrees pulses, which compensate for the offset dependence of (13)C 180 degrees pulses, led to irregularities of the line shapes in the indirect dimension causing deviations of the extracted coupling constants. This behaviour was attributed to coupling evolution, during the time of the adiabatic pulse (2 ms), in the J-modulation spin echo. The replacement of this pulse by different kinds of refocusing pulses indicated that a pair of BIPs (broadband inversion pulses), which behave only partially adiabatic, leads to correct line shapes and coupling constants conserving the good sensitivity obtained with adiabatic pulses.  相似文献   

8.
A new technique for restoring nuclear magnetic dipole-dipole couplings under magic-angle spinning (MAS) in solid state nuclear magnetic resonance (NMR) spectroscopy is described and demonstrated. In this technique, called broadband rotational resonance (BroBaRR), the coupling between a pair of nuclear spins with NMR frequency difference close (but not necessarily equal) to the MAS frequency is restored by the application of a train of weak radio-frequency pulses at a carrier frequency close to the average of the two NMR frequencies. Phase or amplitude modulation of the pulse train at half the MAS frequency splits the carrier into sidebands close to the two NMR frequencies. The pulse train then removes offsets from the exact rotational resonance condition, leading to dipolar recoupling over a bandwidth controlled by the amplitude of the pulse train. (13)C NMR experiments on uniformly (15)N,(13)C-labeled L-valineHClH(2)O powder validate the theoretical analysis. BroBaRR will be useful in studies of molecular structures by solid state NMR, for example in the detection of long-range couplings between carbons in uniformly labeled organic and biological materials.  相似文献   

9.
A strong case exists for the introduction of burst non‐uniform sampling (NUS) in the direct dimension of NMR spectroscopy experiments. The resulting gaps in the NMR free induction decay can reduce the power demands of long experiments (by switching off broadband decoupling for example) and/or be used to introduce additional pulses (to refocus homonuclear coupling, for example). The final EXtended ACquisition Time (EXACT) spectra are accessed by algorithmic reconstruction of the missing data points and can provide higher resolution in the direct dimension than is achievable with existing non‐NUS methods.  相似文献   

10.
Modified two-dimensional (2D) triple-resonance H(C)P and H(P)C experiments based on INEPT/HMQC and double-INEPT schemes are applied to the study of organophosphorus compounds at natural abundances. The implementation of effective (1)H--(13)C gradient selection, additional purging pulsed field gradients, spinlock pulses, and improved phase cycling is demonstrated to allow weak correlation signals based on long-range couplings to be readily observed. Through the combination of two heteronuclear long-range coupling constants, (n)J(CH) and (n)J(PC) in H(C)P experiments or (n)J(PH) and (n)J(PC) in H(P)C experiments, protons can be correlated to a second heteronucleus through 4-7 chemical bonds. These experiments thus overcome the inherit limitations of classical (1)H-X HMBC experiments, which require a nonzero value of the heteronuclear coupling constant (n)J(XH). Ultra-broadband inversion composite pulses are successfully employed in the H(P)C INEPT/HMQC and H(P)C double-INEPT pulse sequences to increase the utility of the experiments and the quality of obtained spectra. This work extends and completes a set of 2D phase-sensitive triple-resonance experiments applicable at natural abundances, and also offers insight into the methodology of triple-resonance experiments and the application of pulsed field gradients. A one-dimensional triple-resonance experiment employing carbon detection is suggested for accurate determination of small (n)J(PC).  相似文献   

11.
Two general methods for the selective incorporation of an (15)N-label in the azole ring of tetrazolo[1,5-b][1,2,4]triazines and tetrazolo[1,5-a]pyrimidines were developed. The first approach included treatment of azinylhydrazides with (15)N-labeled nitrous acid, and the second approach was based on fusion of the azine ring to [2-(15)N]-5-aminotetrazole. The synthesized compounds were studied by (1)H, (13)C, and (15)N NMR spectroscopy in both DMSO and TFA solution, in which the azide-tetrazole equilibrium is shifted to tetrazole and azide forms, respectively. Incorporation of the (15)N-label led to the appearance of (13)C-(15)N J coupling constants (J(CN)), which can be measured easily using either 1D (13)C spectra with selective (15)N decoupling or with amplitude modulated 1D (13)C spin-echo experiments with selective inversion of the (15)N nuclei. The observed J(CN) patterns permit unambiguous determination of the type of fusion between the azole and azine rings in tetrazolo[1,5-b][1,2,4]triazine derivatives. Joint analysis of J(CN) patterns and (15)N chemical shifts was found to be the most efficient way to study the azido-tetrazole equilibrium.  相似文献   

12.
13C-only spectroscopy was used to measure multiple residual (13)C-(13)C dipolar couplings (RDCs) in uniformly deuterated and (13)C-labeled proteins. We demonstrate that (13)C-start and (13)C-observe spectra can be routinely used to measure an extensive set of the side-chain residual (13)C-(13)C dipolar couplings upon partial alignment of human ubiquitin in the presence of bacteriophages Pf1. We establish that, among different broadband polarization transfer schemes, the FLOPSY family can be used to exchange magnetization between a J coupled network of spins while largely decoupling dipolar interactions between these spins. An excellent correlation between measured RDCs and the 3D structure of the protein was observed, indicating a potential use of the (13)C-(13)C RDCs in the structure determination of perdeuterated proteins.  相似文献   

13.
This paper presents polychromatic selective polarization inversion (PC-SPI) as an alternative to the polarization transfer methods recently developed for the application of NMR to large biological molecules. Theoretical and numerical considerations indicate that PC-SPI has the potential for more efficient polarization transfer under conditions of rapid transverse relaxation compared to J coupling- and cross-correlated relaxation-based transfers. The main advantage offered by the method presented here is the maintenance of near-optimal trajectories of inversion of the individual components of the spin magnetization while using broadband optimized pulses. A 2D experiment was implemented combining PC-SPI with TROSY-based chemical shift correlation. The experiment was applied to detect (15)N-(1)H chemical shift correlation spectra of a 200 kDa complex consisting of an 80% (2)H- and uniformly (15)N,(13)C-labeled 22 kDa portion of complement receptor type 1 and unlabeled C3b of complement (180 kDa).  相似文献   

14.
In order to develop triple-resonance solid-state NMR spectroscopy of membrane proteins, we have implemented several different (13)C labeling schemes with the purpose of overcoming the interfering effects of (13)C-(13)C dipole-dipole couplings in stationary samples. The membrane-bound form of the major coat protein of the filamentous bacteriophage Pf1 was used as an example of a well-characterized helical membrane protein. Aligned protein samples randomly enriched to 35% (13)C in all sites and metabolically labeled from bacterial growth on media containing [2-(13)C]-glycerol or [1,3-(13)C]-glycerol enables direct (13)C detection in solid-state NMR experiments without the need for homonuclear (13)C-(13)C dipole-dipole decoupling. The (13)C-detected NMR spectra of Pf1 coat protein show a substantial increase in sensitivity compared to the equivalent (15)N-detected spectra. The isotopic labeling pattern was analyzed for [2-(13)C]-glycerol and [1,3-(13)C]-glycerol as metabolic precursors by solution-state NMR of micelle samples. Polarization inversion spin exchange at the magic angle (PISEMA) and other solid-state NMR experiments work well on 35% random fractionally and metabolically tailored (13)C-labeled samples, in contrast to their failure with conventional 100% uniformly (13)C-labeled samples.  相似文献   

15.
An alternate technique for accurately monitoring the chemical shift in multidimensional NMR experiments using spin-state selective off-resonance decoupling is presented here. By applying off-resonance decoupling on spin S during acquisition of spin I, we scaled the scalar coupling J(I,S) between the spins, and the residual scalar coupling turns out to be a function of the chemical shift of spin S. Thus, the chemical shift information of spin S is indirectly retained, without an additional evolution period and the accompanying polarization transfer elements. The detection of the components of the doublet using spin-state selection enables an accurate measurement of the residual scalar coupling and a precise value for the chemical shift, concomitantly. The spin-state selection further yields two subspectra comprising either one of the two components of the doublet and thereby avoiding the overlap problems that arise from off-resonance decoupling. In general, spin-state selective off-resonance decoupling can be incorporated into any pulse sequence. Here, the concept of spin-state selective off-resonance decoupling is applied to 3D (13)C or (15)N-resolved [(1)H,(1)H]-NOESY experiments, adding the chemical shift of the heavy atom attached to the hydrogen ((13)C or (15)N nuclei) with high resolution resulting in a pseudo-4D. These pseudo-4D heavy-atom resolved [(1)H, (1)H]-NOESY experiments contain chemical shift information comparable to that of 4D (13)C or (15)N-resolved [(1)H,(1)H]-NOESY, but with an increase in chemical shift resolution by 1-2 orders of magnitude.  相似文献   

16.
Highly resolved solid-state HETCOR NMR spectra between protons and low gamma nuclei ((13)C and (29)Si) can be suitably obtained on surfaces using a "brute force" (1)H-(1)H decoupling by MAS at rates > or =40 kHz. Despite a small rotor volume (<10 microL), a (1)H-(13)C HETCOR spectrum of allyl groups (AL, -CH(2)-CH=CH(2)) covalently anchored to the surface of MCM-41 silica was acquired without using isotope enrichment. The advantages of using fast MAS in such studies include easy setup, robustness, and the opportunity of using low RF power for decoupling. In the case of the (1)H-(29)Si HETCOR experiment, the sensitivity can be dramatically increased, in some samples by more than 1 order of magnitude, through implementing into the pulse sequence a Carr-Purcell-Meiboom-Gill train of pi pulses at the (29)Si spin frequency. The use of low-power heteronuclear decoupling is essential in the (1)H-(29)Si CPMG-HETCOR experiment, due to unusually long acquisition periods. These methods provided detailed structural characterization of the surface of AL-MCM mesoporous silica.  相似文献   

17.
Different decoupling sequences are tested—using various shaped radio‐frequency (RF) pulses—to achieve the longest possible lifetimes of singlet‐state populations over the widest possible bandwidths, that is, ranges of offsets and relative chemical shifts of the nuclei involved in the singlet states. The use of sinc or refocusing broadband universal rotation pulses (RE‐BURP) for decoupling during the intervals where singlet‐state populations are preserved allows one to extend the useful bandwidth with respect to prior state‐of‐the‐art methods based on composite‐pulse WALTZ decoupling. The improved sinc decoupling sequences afford a more reliable and sensitive measure of the lifetimes of singlet states in pairs of spins that have widely different chemical shifts, such as the two aromatic protons H5 and H6 in uracil. Similar advantages are expected for nucleotides in RNA and DNA. Alternative approaches, in particular frequency‐modulated decoupling sequences, also appear to be effective in preserving singlet‐state populations, even though the profiles of the apparent relaxation rate constants as a function of the offset are somewhat perturbed. The best decoupling sequences prove their utility in sustaining longer lifetimes of singlet states than previously achieved for the side‐chain tyrosine protons in bovine pancreatic trypsin inhibitor (BPTI) at 600 MHz (14.1 T), where the differences of chemical shifts between coupled protons are a challenge.  相似文献   

18.
In nuclear magnetic resonance spectroscopy, experimental limits due to the radiofrequency transmitter and/or coil means that conventional radiofrequency pulses (“hard pulses”) are sometimes not sufficiently powerful to excite magnetization uniformly over a desired range of frequencies. Effects due to nonuniform excitation are most frequently encountered at high magnetic fields for nuclei with a large range of chemical shifts. Using optimal control theory, we have designed broadband excitation pulses that are suitable for solid‐state samples under magic‐angle‐spinning conditions. These pulses are easy to implement, robust to spinning frequency variations, and radiofrequency inhomogeneities, and only four times as long as a corresponding hard pulse. The utility of these pulses for uniformly exciting 13C nuclei is demonstrated on a 900 MHz (21.1 T) spectrometer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
We introduce a family of solid-state NMR pulse sequences that generalizes the concept of second averaging in the modulation frame and therefore provides a new approach to perform magic angle spinning dipolar recoupling experiments. Here, we focus on two particular recoupling mechanisms-cosine modulated rotary resonance (CMpRR) and cosine modulated recoupling with isotropic chemical shift reintroduction (COMICS). The first technique, CMpRR, is based on a cosine modulation of the rf phase and yields broadband double-quantum (DQ) (13)C recoupling using >70 kHz omega(1,C)/2pi rf field for the spinning frequency omega(r)/2=10-30 kHz and (1)H Larmor frequency omega(0,H)/2pi up to 900 MHz. Importantly, for p>or=5, CMpRR recouples efficiently in the absence of (1)H decoupling. Extension to lower p values (3.5相似文献   

20.
A scheme has been developed to eliminate virtually all signal intensity dependence on 1JCH in polarization transfers between 1H and 13C nuclei, reducing differences in signal intensity to only 1.5% over the entire natural 1JCH range. The scheme relies on the summation of time-domain data acquired with four suitably selected Delta delays so that the J dependence is essentially canceled in the final, signal-averaged free-induction decay. These Delta delays have been incorporated into the DEPT pulse sequence to create sensitivity-enhanced experiments for collecting quantitative 13C{1H} spectra. Four experiments, each with unique read pulse angles, give quantitative spectra with 200-300% more sensitivity than conventional 13C spectra acquired with inverse-gated 1H decoupling. The experiments are ideal for recording spectra with improved quantitative information or for substantially reducing the long acquisition times indicative of quantitative 13C experiments. The ability of the experiments to provide quantitative spectra was demonstrated with a simple ethylbenzene solution, however, they can easily be adapted to various applications for analysis of complex mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号