首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
预锻模具形状优化设计与有限元灵敏度分析   总被引:2,自引:0,他引:2  
采用刚-粘塑性有限元灵敏度分析方法研究锻造过程的预锻模具形状优化设计问题。表示预锻模具形状的三次B样条曲线的控制系数用作设计变量。以实际终锻件与理想终锻件的形状差异为目标函数,给出了与设计变量有关的目标函数,节点坐标和节点速度等方面的灵敏度及其数学关系,对于典型的轴对称锻造过程,优化设计的预锻模具形状可获得理想的的终锻件形状,为实现净成形锻造提供了一种有效方法。  相似文献   

2.
ABSTRACT

In a domain approach to shape design sensitivity analysis, shape design sensitivity is calculated by summing contributions from the entire domain. For mechanical systems with general geometries, defining design velocity field over the entire domain can be very complicated. A design boundary-layer is introduced to minimize difficulties associated with the domain approach. The design boundary-layer is a pre-selected part of the domain, near the varying boundary. A nonzero design velocity field is defined over only the design boundary-layer. The boundary-layer approach is shown to be easier to apply and more efficient to use than conventional full domain methods.  相似文献   

3.
广义变分原理的结构形状优化伴随法灵敏度分析   总被引:3,自引:0,他引:3  
郭旭  顾元宪  赵康 《力学学报》2004,36(3):288-295
提出了一种利用伴随变量进行结构形状优化灵敏度分析的新方法. 基于广义变分原理, 考虑了形状优化中位移边界条件的变化对结构响应的影响. 新方法弥补了Arora 等人所提出的形状优化灵敏度分析变分原理中的缺陷,为采用伴随法进行灵敏度分析提供了 新的框架.  相似文献   

4.
反命题作为一种可变(未知)边界问题近年来得到了广泛的研究。本文给出了亚声速平面叶栅反命题计算的势函数变域变分有限元解法。变域变分通过把可变边界结合在变分泛函中,使其与求解流场的控制方程结合起来,从而使可变边界求解和流场分析可以完全耦合进行。本文针对亚声速平面叶栅的反命题,根据泛函的驻值必要条件,介绍了变域变分有限元方法的求解过程,最后给出了两个数值算例。这两个算例均采用四节点矩形单元的插值基函数,第一个算例用于检验程序的可靠性,第二个算例设计了一个给定叶面马赫数分布的叶型,并与试验结果进行对照。  相似文献   

5.
This contribution deals with the nonlinear analysis of shape memory alloy (SMA) adaptive trusses employing the finite element method. Geometrical nonlinearities are incorporated into the formulation together with a constitutive model that describes different thermomechanical behaviors of SMA. It has four macroscopic phases (three variants of martensite and an austenitic phase), and considers different material properties for austenitic and martensitic phases together with thermal expansion. An iterative numerical procedure based on the operator split technique is proposed in order to deal with the nonlinearities in the constitutive formulation. This procedure is introduced into ABAQUS as a user material routine. Numerical simulations are carried out illustrating the ability of the developed model to capture the general behavior of shape memory bars. After that, it is analyzed the behavior of some adaptive trusses built with SMA actuators subjected to different thermomechanical loadings.  相似文献   

6.
采用有限元方法模拟微突体在TiNi形状记忆合金表面的压入过程,研究了伪弹性应变、伪弹性模量和相变启动应力等参数对TiNi合金抗磨性能的影响,并初步确立了TiNi形状记忆合金耐磨材料设计准则.结果表明:伪弹性应变对TiNi形状记忆合金摩擦学性能的影响最显著;就TiNi形状记忆合金耐磨材料的设计而言,应当强调提高伪弹性应变、降低伪弹性模量、增加相变启动应力;同时满足上述3方面要求的TiNi形状记忆合金的耐磨特性最优.  相似文献   

7.
多边形有限单元形函数有wachspress插值、Laplace插值和平均值插值三种类型.本文对三种多边形有限单元形函数的性质作了比较研究,给出了三种形函数各自的优点和局限性.Waclaspress和Laplace形函数是有理函数形式,而平均值形函数是无理函数形式.三种形函数均满足单位分解性、线性完备性,且在单元边界上呈线性.在三角形单元上,它们都等价于三角形面积坐标插值.在矩形单元上,Wachspress和Laplace形函数等价于双线性多项式插值形函数.Wachspress和平均值形函数适用于任意凸多边形单元,Laplace形函数更适用于圆内接多边形单元.Wachspress形函数不能推广到含有边节点的单元,平均值形函数可以直接推广到含有边节点的单元.数值试验,验证了本文理论分析的结论.  相似文献   

8.
9.
ABSTRACT

A continuum-based design sensitivity analysis (DSA) method is presented for configuration (or layout) design of nonlinear structural systems with rate-independent elastoplastic material. Configuration design variables are characterized by shape and orientation changes of the structural component. A continuum-based shape DSA method that utilizes the material derivative of continuum mechanics is extended to account for effects of shape and orientation variations. The incremental analysis method, with updated Lagrangian formulation, is used to derive the design sensitivity for the nonlinear structural system.

To derive the design sensitivity, incremental energy and load forms are utilized. The first variations of energy and load forms and the static response with respect to configuration design variables are described using the material derivative. Direct differentiation is utilized to obtain the first variation of the performance measure explicitly in terms of variations of configuration design variables. With the consistent tangent stiffness matrix employed at the end of each load step to compute the design sensitivity, it is found that no iterations are necessary to compute design sensitivity. In addition, the linear design velocity is used to account for configuration design changes, with the velocity field being updated at each load step of the incremental analysis.  相似文献   

10.
IntroductionShapeoptimizationforelastomerisanimportantmeasuretorelievestresscontrition ,preventbreaking ,improveload_bearingcapacity .Structuralrepetitionanalysis,sensitivityanalysisandoptimalalgorithmarethreeimportantlinksofshapeoptimization .Inthecours…  相似文献   

11.
ABSTRACT

In this paper, problems of sensitivity analysis and shape design for elastic solids are investigated. Optimization criteria are provided by integral and local functionals defined on the internal region and the boundary of the body. New sensitivity analysis relations are derived and implemented in successive optimization algorithms. Important aspects of effective shape optimization algorithms are discussed.  相似文献   

12.
The dependence of static response and eigenvalues on the shape of plates and plane elastic solids is characterized. Shape of elastic bodies is taken as the design variable. The material derivative idea of continuum mechanics is used to obtain expressions for directional derivatives of displacement fields and eigenvalues with respect to a transformation function that defines a shape variation. The result is used to obtain explicit and computable expressions for variations of integral functionals that arise in structural optimization problems.  相似文献   

13.
For many problems of compressible fluid dynamics it is desirable to find the sensitivity of the shock position with respect to the shape of the domain occupied by the fluid. One application is for the minimization of the sonic boom of airplanes; another is for the stability of the stream in fast-flowing rivers or canals. Classical calculus of variation is not valid for these cases because of the presence of Dirac functions appearing when a discontinuous function is differentiated, but we show here on the compressible potential flow equation how to find the equations of the derivatives and what are the linearized problems. Some numerical test cases are given for illustration.  相似文献   

14.
ABSTRACT

This paper is devoted to sensitivity analysis of eigenvalues of nonsym-metric operators that depend on parameters. Special attention is given to the case of multiple eigenvalues. Due to the nondifferentiability (in the common sense) of multiple roots, directional derivatives of eigenvalues and eigenvectors in parametric space are obtained. Sensitivity analysis is based on the perturbation method of eigenvalues and eigenvectors. The generalized eigenvalue problem and vibrational systems are also investigated. Strong and weak interaction of eigenvalues are distinguished and interactions in two- and three-dimensional space are treated geometrically. It is shown that the strong interaction of eigenvalues is a typical catastrophe. Simple examples that illustrate the main ideas are presented. The results obtained are important for qualitative and quantitative study of mechanical systems subjected to static and dynamic instability phenomena.  相似文献   

15.
ABSTRACT

A continuum-based design sensitivity analysis (DSA) method is presented for configuration design of nonlinear structural systems using Mindlin plate and Tim-oshenko beam theories. Both displacement and critical load performance measures are considered. Configuration design variables are characterized by shape and orientation changes of structural components. The material derivative that is used to develop the continuum-based shape DSA method is extended to account for effects of configuration design variation. The piecewise linear design velocity field, i.e., C0-regular, is used to support configuration design changes for a broad class of built-up structures with beams and plates. To allow use of the C0-design velocity field, mathematical models of beam and plate bending must be second-order partial differential equations, so that only first-order derivatives appear in the integrand of the energy equation and, thus, in the integrand of the configuration design sensitivity expression. Since the Mindlin plate and Timoshenko beam theories use displacement and rotation to describe structural response, mathematical models of beam and plate bending are reduced to second-order partial differential equations. The isoparametric finite element formulations are used for numerical evaluation of continuum design sensitivity expressions.  相似文献   

16.
Taylor  M.  Cotton  J.  Zioupos  P. 《Meccanica》2002,37(4-5):419-429
Meccanica - Fatigue failure of bone has been implicated in a number of clinical failure scenarios. At the material level, the fatigue behaviour of cancellous bone is poorly understood. At the...  相似文献   

17.
本文将所考虑的问题视为具有两类独立变量的力学系统,通过建立具有两类变量的伴随系统方程,得到了定义在变化边界上的目标或约束泛函的敏度分析公式,由此建立了完全边界型的形状优化方法。  相似文献   

18.
Shape sensing of 3D frame structures using an inverse Finite Element Method   总被引:1,自引:0,他引:1  
A robust and efficient computational method for reconstructing the elastodynamic structural response of truss, beam, and frame structures, using measured surface-strain data, is presented. Known as “shape sensing”, this inverse problem has important implications for real-time actuation and control of smart structures, and for monitoring of structural integrity. The present formulation, based on the inverse Finite Element Method (iFEM), uses a least-squares variational principle involving section strains (also known as strain measures) of Timoshenko theory for stretching, torsion, bending, and transverse shear. The present iFEM methodology is based on strain–displacement relations only, without invoking force equilibrium. Consequently, both static and time-varying displacement fields can be reconstructed without the knowledge of material properties, applied loading, or damping characteristics. Two finite elements capable of modeling frame structures are derived using interdependent interpolations, in which interior degrees of freedom are condensed out at the element level. In addition, relationships between the order of kinematic-element interpolations and the number of required strain gauges are established. Several example problems involving cantilevered beams and three-dimensional frame structures undergoing static and dynamic response are discussed. To simulate experimentally measured strains and to establish reference displacements, high-fidelity MSC/NASTRAN finite element analyses are performed. Furthermore, numerically simulated measurement errors, based on Gaussian distribution, are also considered in order to verify the stability and robustness of the methodology. The iFEM solution accuracy is examined with respect to various levels of discretization and the number of strain gauges.  相似文献   

19.
Abstract

Major software improvements have been made by the developers of NASTRAN in the area of structural optimization. Grid point sensitivity is available in version 67. This paper tests this capability by comparison with analytical solutions. Suggestions for further improvements are identified as well as recommendations for its use. The new capability has been integrated into an optimization system for component design. Several examples, including a cantilever beam, a simplified engine connecting rod, a cantilever plate, and an upper suspension control arm, are analyzed and optimized using this system.  相似文献   

20.
本文根据实际复杂工程结构独立随机变量多,计算工作量大的特点,提出了用广义随机变量替代一般的独立随机变量以减少基本随机变量的数目,用响应曲面法替代敏度法或摄动法以提高计算效率。算例证明,以上措施取得了良好的效果,有助于非线性随机有限元法在实际工程结构可靠性分析中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号