首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An amperometric pesticides inhibition biosensor has been developed and used for determination of pesticides in vegetable samples. To eliminate the interference of ascorbic acid, multilayer films of polyelectrolyte (chitosan/polystyrensulfonate) were coated on the glass carbon electrode. Then, acetylcholinesterase was immobilized on the electrode based on surface-treated nanoporous ZrO2/chitosan composite film as immobilization matrix. As a modified substrate, acetylthiocholine was hydrolysed by acetylcholinesterase and produced thiocholine which can be oxidized at +700?mV vs. SCE. Pesticides inhibit the activity of enzyme with an effect of decreasing of oxidation current. The experimental conditions were optimized. The electrode has a linear response to acetylthiocholine within 9.90?×?10?6 to 2.03?×?10?3?M. The electrode provided a linear response over a concentration range of 6.6?×?10?6 to 4.4?×?10?4?M for phoxim with a detection limit of 1.3?×?10?6?M, over a range of 1.0?×?10?8 to 5.9?×?10?7?M for malathion, and over a range of 8.6?×?10?6 to 5.2?×?10?4?M for dimethoate. This biosensor has been used to determine pesticides in a real vegetable sample.  相似文献   

2.
An electrochemical sensor was developed for the detection of organophosphate pesticides based on electrodeposition of gold nanoparticles on a multi-walled carbon nanotubes modified glassy carbon electrode. Cyclic voltammetry was employed in the process of electrodeposition. Field emission scanning electron microscope and X-ray diffraction techniques were used for characterization of the composite. Organophosphate pesticides (e.g. parathion) were determined using linear scan voltammetry. A highly linear response to parathion in the concentration range from 6.0?×?10?5 to 5.0?×?10?7 M was observed, with a detection limit of 1.0?×?10?7 M estimated at a signal-to-noise ratio of 3. The method has been applied to the analysis of parathion in real samples.  相似文献   

3.
An enhanced oxime-based electrochemical sensor decorated with gold nanoparticles (AuNPs) and Co3O4 hexagonal nanosheets coupled with nitrogen-doped graphene has been developed for dimethoate determination dramatically. The introduction of Co3O4 hexagonal nanosheets tackles agglomeration of AuNPs and also enhances the sensitivity of electrochemical sensors greatly. The structure and properties of the synthesized composites were characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy and Fourier transform infrared spectroscopy, confirming the successful modification of 2-(4-mercaptobutoxy)-1-naphthaldehyde oxime and Co3O4 supported AuNPs in a great experiment. In addition, differential pulse voltammetry further revealed that the developed electrochemical sensor exhibited excellent selectivity, sensitivity and stability in real samples analysis. Under optimal conditions, the modified sensor displayed a broad linear range from 1?×?10?14 M to 1?×?10?6 M with a fairly low detection limit of 8.4?×?10?14 M (S/N?=?3) and was expected to act as a superior method for dimethoate determination.  相似文献   

4.
We herein report on the electrocatalytic activity towards the oxidation of NADH of a PVC/TTF‐TCNQ composite electrode modified with gold nanoparticles. This electrocatalytic property allows proposing this system as a new alternative for amperometric determination of NADH, without need to add another mediator. The sensor shows a linear response to NADH over a concentration range from 5.0×10?6 M up to 5.0×10?4 M, with a sensitivity of 11.22±0.5 mA M?1 and a detection limit (S/N=3) of 4.0×10?6 M for measurements in batch and similar data in FIA.  相似文献   

5.
Acetone-precipitated pulp from banana skins is physicall entrapped at the tip of a carbon dioxide gas-sensor and on a hydrogen peroxide sensor probe to determine oxalate potentiometrically and amperometrically in aqueous solution and inurine. The enzyme present in the tissue is oxalate oxidase. The potentiometric response has a slope of 47–50 mV/decade for 1 × 10?4 M–2 × 10?3 M oxalate with a detection limit of 2 × 10?5 M. The amperometric response is linear for 2 × 10t-5–3 × 10?4 M oxalate with a dectection limit of 2 × 10?6 M. Average recoveries of oxalate added to aqueous samples were 96.2% and 98.0%, and average relative standrd deviations were 3.8% and 3.6% for the potentiometric and amperometric systems, respectively. Oxalate was determined in six control urine samples, with relative errors of about 2.5%, by both electrode systems after a simple clean-up.  相似文献   

6.
An amperometric enzyme electrode for the determination of hypoxanthine in fish meat is described. The hypoxanthine sensor was prepared from xanthine oxidase immobilized by covalent binding to cellulose triacetate and a carbon paste electrode containing hydroxymethylferrocene. The xanthine oxidase membrane was retained behind a dialysis membrane at a carbon paste electrode. The sensor showed a current response to hypoxanthine due to the bioelectrocatalytic oxidation of hypoxanthine, in which hydroxymethyiferrocene served as an electron-transfer mediator. The limit of detection is 6 × 10?7 M, the relative standard deviation is 2.8% (n=28) and the response is linear up to 7 × 10?4 M. The sensor responded rapidly to a low hypoxanthine concentration (7 × 10?4 M), the steady-state current response being achieved in less than 1 min, and was stable for more than 30 days at 5 ° C. Results for tuna samples showed good agreement with the value determined by the conventional method.  相似文献   

7.
A modified carbon electrode for the amperometric determination of hydrogen peroxide is described. By deposition of a 15-nm thick layer of a 40:60 mixture of palladium and gold on the surface of the electrode the overvoltages for both the oxidation and the reduction can be decreased by at least 800 mV. When applied as an electrochemical sensor in a flow-injection system, linear calibration graphs were obtained between 10?7 and 5 × 10?3 M hydrogen peroxide. The modified electrodes were stable for months.  相似文献   

8.
《Electroanalysis》2006,18(4):345-350
Gold modified nanoporous silica based magnetic microparticles have been prepared as support for the immobilization of the enzyme horseradish peroxidase (HRP). The enzyme modified gold microparticles were retained onto the surface of a solid carbon paste electrode with the help of a permanent magnet. The analytical performances of the resulting biosensor were characterized by studying hydroquinone (HQ) and hydrogen peroxide. The former was monitored by the direct electroreduction of the biocatalytically generated quinone. Several experimental parameters influencing the biosensor response were investigated. A linear response to HQ was obtained in the concentration range comprised between 5×10?7 and 4.5×10?6 M with a detection limit of 4×10?7 M. The enzyme electrode provided a linear response to hydrogen peroxide over a concentration range comprised between 5×10?7?1.3×10?4 M with a detection limit of 4×10?7 M. The inhibition of the biosensor response in the presence of thiols e.g. cysteine, captopril, glutathione and Nacystelyn (NAL) has been pointed out.  相似文献   

9.
《Analytical letters》2012,45(14):2725-2735
Abstract

A procedure for fabricating an enzyme electrode has been described based on the effective immobilization of horseradish peroxidase to an ultrathin titania layer–modified self‐assembled gold electrode. The resulting electrode exhibits excellent electrocatalytical activity to hydrogen peroxide in the presence of hydroquinone as a mediator. The analytical conditions were studied in detail by using an amperometric method. Under the optimized conditions, a detection limit of 7.1×10?7 mol l?1 and a linear response to hydrogen peroxide that ranged from 1×10?6 mol l?1 to 7.6×10?4 mol l?1 were obtained. The reproducibility and stability were examined with satisfactory results.  相似文献   

10.
《Analytical letters》2012,45(8):1873-1896
Abstract

A flow system incorporating an amperometric glucose oxidase enzyme electrode has been used to study the inhibitory effects of 16 metal cations on glucose oxidase. Only copper(II), mercury(II) and silver(I) caused any significant inhibition. the enzyme electrode could be reactivated by EDTA, the reactivation being most effective for copper(II) and least so for silver(I). Other complexing agents were tried for reactivation but proved to be unsatisfactory.

The ability to reactivate the enzyme on the electrode following copper(II) inhibition, and the linear response of the system to the level of this inhibitor according to I/A = -9.49 × 10?7 log([Cu]/M) + 4.84 × 10?8; r = 0.994 between 2.5 × 10?4M and 5 × 10?3M [Cu]2+ indicates a prospect for the use of a flow system for determining enzyme inhibitors in samples.  相似文献   

11.
SiO2 nanosheets (SNS) have been prepared by a chemical method using montmorillonite as raw material and were characterized by scanning electron microscopy and X-ray diffraction. SiO2 nanosheet–Nafion nanocomposites with excellent conductivity, catalytic activity, and biocompatibility provided an extremely hydrophilic surface for biomolecule adhesion. Chitosan was used as a cross-linker to immobilize acetylcholinesterase (AChE), and Nafion was used as a protective membrane to efficiently improve the stability of the AChE biosensor. The AChE biosensor showed favorable affinity for acetylthiocholine chloride and catalyzed the hydrolysis of acetylthiocholine chloride with an apparent Michaelis–Menten constant of 134 μM to form thiocholine, which was then oxidized to produce a detectable and fast response. Based on the inhibition by pesticides of the enzymatic activity of AChE, detection of the amperometric response from thiocholine on the biosensor is a simple and effective way to biomonitor exposure to pesticides. Under optimum conditions, the biosensor detected methyl parathion, chlorpyrifos, and carbofuran at concentrations ranging from 1.0?×?10?12 to 1?×?10?10?M and from 1.0?×?10?10 to 1?×?10?8?M. The detection limits for methyl parathion, chlorpyrifos, and carbofuran were 5?×?10?13?M. The biosensor developed exhibited good sensitivity, stability, reproducibility, and low cost, thus providing a new promising tool for analysis of enzyme inhibitors.
Figure
Performances and detection pesticides of a SiO2 nanosheet biosensor  相似文献   

12.
In this work, we report on the preparation of a simple, sensitive DNA impedance sensor. Firstly gold nanoparticles were electrodeposited on the surface of a gold electrode, and then probe DNA was immobilized on the surface of gold nanoparticles through a 5′‐thiol‐linker. Electrochemical impedance spectroscopy (EIS) was used to investigate probe DNA immobilization and hybridization. Compared to the bare gold electrode, the gold nanoparticles modified electrode could improve the density of probe DNA attachment and the sensitivity of DNA sensor greatly. The difference of electron transfer resistance (ΔRet) was linear with the logarithm of complementary oligonucleotides sequence concentrations in the range of 2.0×10?12 to 9.0×10?8 M, and the detection limit was 6.7×10?13 M. In addition, the DNA sensor showed a fairly good reproducibility and stability during repeated regeneration and hybridization cycles.  相似文献   

13.
Despite the fact that a considerable amount of effort has been invested in the development of biosensors for the detection of pesticides, there is still a lack of a simple and low-cost platform that can reliably and sensitively detect their presence in real samples. Herein, an enzyme-based biosensor for the determination of both carbamate and organophosphorus pesticides is presented that is based on acetylcholinesterase (AChE) immobilized on commercially available screen-printed carbon electrodes (SPEs) modified with carbon black (CB), as a means to enhance their conductivity. Most interestingly, two different methodologies to deposit the enzyme onto the sensor surfaces were followed; strikingly different results were obtained depending on the family of pesticides under investigation. Furthermore, and towards the uniform application of the functionalization layer onto the SPEs’ surfaces, the laser induced forward transfer (LIFT) technique was employed in conjunction with CB functionalization, which allowed a considerable improvement of the sensor’s performance. Under the optimized conditions, the fabricated sensors can effectively detect carbofuran in a linear range from 1.1 × 10?9 to 2.3 × 10?8 mol/L, with a limit of detection equal to 0.6 × 10?9 mol/L and chlorpyrifos in a linear range from 0.7 × 10?9 up to 1.4 × 10?8 mol/L and a limit of detection 0.4 × 10?9 mol/L in buffer. The developed biosensor was also interrogated with olive oil samples, and was able to detect both pesticides at concentrations below 10 ppb, which is the maximum residue limit permitted by the European Food Safety Authority.  相似文献   

14.
《Analytical letters》2012,45(8):1491-1499
ABSTRACT

Glassy Carbon Electrodes coated with stearic acid provide an amperometric sensor for detection of paraquat, the active ingredient of the herbicide Gramoxone. The linear dynamic range of the sensor for Paraquat is 1.02 × 10?3 mol dm?3 to 1.02 × 10?2 mol dm?3 with the minimum detection limit 6.37 × 10?4 mol dm?3.  相似文献   

15.
A sensor based on gold nanoparticle on the surface of L-cysteine modified gold electrode is prepared. Electrochemical behavior of dopamine hydrochloride is investigated. The linear relation between peak current of dopamine hydrochloride and scan speed in the range of 10 to 1000 mV s?1 indicates that a diffusion-adsorption controls the process. The linearity range is 1.05 × 10?5–7.38 × 10?4 M with detection limit of 1.05 × 10?6 M. The recoveries were in the range from 99.8 to 101.5% with relative standard deviations of 1.3 ~ 2.3% (n = 6). The modified electrode under ambient conditions over a period of 2 weeks has an excellent repeatability and reproducibility.  相似文献   

16.
A facile and controllable electrodeposition method was developed to directly attach gold nanoparticles (GNPs) on ordered mesoporous carbon (OMC). The GNPs on OMC substrate were characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD) and X‐ray photoelectron spectrometer (XPS), respectively. A nonenzymatic hydrogen peroxide (H2O2) sensor was fabricated on GNPs‐OMC/GCE. The sensor demonstrated a fast amperometric response (2.5 s), a wide linear range toward H2O2 concentrations between 2.0×10?6 and 3.92×10?3 M (R=0.999), and a low detection limit of 0.49 µM (S/N=3). Moreover, it exhibited good reproducibility and long‐term stability. The excellent electrocatalytical activity might be attributed to the synergistic effect of OMC and GNPs.  相似文献   

17.
Pulsed amperometric detection (PAD) at a gold electrode and conductivity detection are compared for glucose, as a representative of the general challenge of the chromatographic detection of carbohydrates. In alkaline solutions of barium hydroxide, which are useful for anion-exchange separation of carbohydrates, PAD is significantly more sensitive than the conductivity detector but the latter provides linear response to higher concentrations than those observed for PAD. The combined technique of conductivity in series with PAD is linear for glucose over the range 6×10?7?1×10?2 M (ca. 6 ng-10 mg per 50-μl sample injection).  相似文献   

18.
A new biosensor for the amperometric detection of hydrogen peroxide was developed based on the co-immobilization of horseradish peroxidase (HRP) and methylene blue on a β-type zeolite modified glassy carbon electrode without the commonly used bovine serum albumin-glutaraldehyde. The intermolecular interaction between enzyme and zeolite matrix was investigated using FT-IR. The cyclic voltammetry and amperometric measurement demonstrated that methylene blue co-immobilized with HRP in this way displayed good stability and could efficiently transfer electrons between immobilized HRP and the electrode. The sensor responded rapidly to H2O2 in the linear range from 2.5 × 10–6 to 4.0 × 10–3 M with a detection limit of 0.3 μM. The sensor was stable in continuous operation.  相似文献   

19.
A novel glucose biosensor is presented as that based on a glassy carbon electrode modified with hollow gold nanoparticles (HGNs) and glucose oxidase. The sensor exhibits a better differential pulse voltammetric response towards glucose than the one based on conventional gold nanoparticles of the same size. This is attributed to the good biological conductivity and biocompatibility of HGNs. Under the optimal conditions, the sensor displays a linear range from 2.0?×?10?6 to 4.6?×?10?5?M of glucose, with a detection limit of 1.6?×?10?6?M (S/N?=?3). Good reproducibility, stability and no interference make this biosensor applicable to the determination of glucose in samples such as sports drinks.
Figure
A novel glucose biosensor was prepared based on glucose oxidase, hollow gold nanoparticles and chitosan modified glassy carbon electrode. The electrode showed a good response for the glucose. The sensor has been verified by the determination of glucose in sport drink  相似文献   

20.
Layered zirconium(IV) aminoethylphosphonate (ZrAEP) have been used as matrices for immobilization of horseradish peroxidase (HRP) to fabricate enzyme electrode for an amperometric biosensor. The biocompatible HRP–ZrAEP films were fabricated on gold electrode surface by electro‐co‐deposition method. The morphology of the HRP–ZrAEP composite was characterized by scanning electron microscopy (SEM). UV–vis spectroscopy indicated that the intercalated HRP retained its native structure after incorporation in the ZrAEP. The immobilized HRP at the HRP–ZrAEP films exhibited good electro catalytic responses to the reduction of hydrogen peroxide. The response time of the biosensor was less than 3 s, and the linear range is from 2.5 × 10?6 to 3.22 × 10?3 M, with a detection limit of 7.0 × 10?7 M (S/N = 3). The Michaelis–Menten constant (KappM) value is estimated to be 2.21 mM. In addition, the obtained biosensor possesses high sensitivity, good stability and reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号