首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ding  Chenxu  Wang  Lingyun  Tian  Chunliang  Li  Yulin  Sun  Zhiwei  Wang  Honglun  Suo  Yourui  You  Jinmao 《Chromatographia》2008,67(11):893-903

A sensitive and selective liquid chromatographic tandem mass spectrometric (LC–MS–MS) method was developed for simultaneous identification and quantification of tamsulosin and dutasteride in human plasma, which was well applied to clinical study. The method was based on liquid–liquid extraction, followed by an LC procedure with a Gemini C-18, 50 mm × 2.0 mm (3 μm) column and using methanol:ammonium formate (97:3, v/v) as the mobile phase. Protonated ions formed by a turbo ionspray in positive mode were used to detect analytes and internal standard. MS–MS detection was by monitoring the fragmentation of 409.1 → 228.1 (m/z) for tamsulosin, 529.3 → 461.3 (m/z) for dutasteride and 373.2 → 305.3 (m/z) for finasteride (IS) on a triple quadrupole mass spectrometer. The lower limit of quantification for both tamsulosin and dutasteride was 1 ng mL−1. The proposed method enables the unambiguous identification and quantification of tamsulosin and dutasteride for clinical drug monitoring.

  相似文献   

2.
In the literature, it is reported that the protonated ketotifen mainly undergoes C?C double bond cleavage in electrospray ionization tandem mass spectrometry (ESI‐MS/MS); however, there is no explanation on the mechanism of this fragmentation reaction. Therefore, we carried out a combined experimental and theoretical study on this interesting fragmentation reaction. The fragmentation of protonated ketotifen (m/z 310) always generated a dominant fragment ion at m/z 96 in different electrospray ionization mass spectrometers (ion trap, triple quadrupole and linear trap quadrupole (LTQ)‐orbitrap). The mechanism of the generation of this product ion (m/z 96) through the C?C double bond cleavage was proposed to be a sequential hydrogen migration process (including proton transfer, continuous two‐step 1,2‐hydride transfer and ion‐neutral complex‐mediated hydride transfer). This mechanism was supported by density functional theory (DFT) calculations and a deuterium labeling experiment. DFT calculations also showed that the formation of the product ion m/z 96 was most favorable in terms of energy. This study provides a reasonable explanation for the fragmentation of protonated ketotifen in ESI‐MS/MS, and the fragmentation mechanism is suitable to explain other C?C double bond cleavage reactions in mass spectrometry. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A sensitive high‐performance liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for measuring vinorelbine was developed. A 100 µL aliquot of plasma was spiked with deuterium‐labeled internal standard and subjected to solid‐phase extraction using an Oasis HLB μ‐elution plate. Two microliters of the extracted samples was directly injected into LC/MS/MS. Chromatographic separation was achieved on a Capcell Pak C18 UG column (2 × 75 mm) with a gradient elution of methanol (mobile phase B) against 0.05% formic acid in aqueous 10 mm ammonium formate (mobile phase A). The LC flow rate was set to 0.28 mL/min and the gradient (solvent B concentration) was processed from 40 to 90%. In mass spectrometric detection, observation of the reaction from a double‐charged precursor ion [M + 2H]2+ (m/z 390) to product ion m/z 122 provided very high sensitivity. The method was validated with a lower limit of detection of 0.2 ng/mL with 0.1 mL of plasma, and the method was used to determine the plasma pharmacokinetics of vinorelbine in dogs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Saikosaponins (SSs) are a class of triterpene saponins with a wide spectrum of bioactivities. A sensitive liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed for simultaneous determination of saikosaponin a, saikosaponin c, saikosaponin d and saikosaponin b2 in rat plasma. Plasma samples were prepared by liquid–liquid extraction. The analytes and the internal standard (IS) digoxin were well separated on an octadecyl column using gradient elution and analyzed by monitoring the fragmentation transition pair of anionic adducts to deprotonated molecules in negative‐mode electrospray. By neutral loss of HCOOH, the transition pairs of m/z 825 → 779 for SSa, SSd, SSb2 and the IS, and m/z 971 → 925 for SSc were sensitive for MS/MS detection with the lower limits of quantification in the range of 0.20–0.40 ng/mL. Method validation experiments were performed, including selectivity, precision, accuracy, linearity, matrix effect, recovery and stability. The validated method was further applied to determine the pharmacokinetics parameters of SSa, c and d in rats following a single oral administration of the extract of chaihu (the dried roots of Bupleurum chinense DC). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
In this study we have coupled mixed quantum‐classical (quantum mechanics/molecular mechanics) direct chemical dynamics simulations with electrospray ionization/tandem mass spectrometry experiments in order to achieve a deeper understanding of the fragmentation mechanisms occurring during the collision induced dissociation of gaseous protonated uracil. Using this approach, we were able to successfully characterize the fragmentation pathways corresponding to ammonia loss (m/z 96), water loss (m/z 95) and cyanic or isocyanic acid loss (m/z 70). Furthermore, we also performed experiments with isotopic labeling completing the fragmentation picture. Remarkably, fragmentation mechanisms obtained from chemical dynamics simulations are consistent with those deduced from isotopic labeling. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
HR011303 is a novel and highly selective urate transporter 1 (URAT1) inhibitor. In this study, a sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for quantification of HR011303 in beagle dog plasma. Plasma samples were pretreated with protein‐precipitation extraction by acetonitrile and added with a trifluoromethyl substituted analog of HR011303 as internal standard. The chromatographic separation was performed on a Shiseido C18 column (100 × 4.6 mm, i.d., 5 μm) by mobile phases consisting of 5 mm ammonium–formic acid (100:0.1) and acetonitrile–formic acid (100:0.1) solutions in gradient elution. The MS detection was conducted in electrospray positive ionization with multiple reactions monitoring at m/z 338 → 240 for HR011303 and m/z 328 → 230 for the internal standard using 25 eV argon gas collision induced dissociation. The established LC–MS/MS method showed good selectivity, sensitivity, precision and accuracy. The plasma pharmacokinetics of HR011303 in beagle dogs following both oral and intravenous administration were then successfully evaluated using this LC–MS/MS method.  相似文献   

7.
A simple, specific and sensitive high-performance liquid chromatography — electrospray tandem mass spectrometry method is developed for the simultaneous determination of fluoxetine and its metabolite norfluoxetine in human plasma. Plasma samples were simply treated with acetonitrile to precipitate and remove proteins and the isolated supernatants were directly injected into the high-performance liquid chromatography — electrospray tandem mass spectrometry system. Chromatographic separation of the analytes was achieved on a Discovery C18 (100 × 2.1 mm I.D., particle size 3.0 μm) column using 0.1% formic acid in water — acetonitrile (40: 60) as mobile phase with a flow rate of 0.2 mL/min. Diazepam was used as the internal standard. The compounds were ionized in the electrospray ionization source of the mass spectrometer and were detected by selected reaction ion monitoring of the transitions of m/z 310 → m/z 44.3 for fluoxetine, m/z 296 → m/z 134 for norfluoxetine and m/z 285 → m/z 193 for the internal standard. The method has low limit of detection (LOD) of 0.02 ng/mL and 0.03 ng/mL for fluoxetine and norfluoxetine, respectively. The inter- and intra-run precision was measured to be below 5.3% (relative standard deviation) for both fluoxetine and norfluoxetine. The developed method was successfully used to investigate plasma concentrations of fluoxetine and norfluoxetine in the pharmacokinetic study of Chinese volunteers who received fluoxetine orally.  相似文献   

8.
Gas chromatography in combination with electron capture negative ion mass spectrometry (GC/ECNI‐MS) is a sensitive method for the determination of polybrominated compounds in environmental and food samples via detection of the bromide ion isotopes m/z 79 and 81. The standard reagent gas for inducing chemical ionization in GC/ECNI‐MS is methane. However, the use of methane has some drawbacks as it promotes carbonization of the filament and ion source. In this study, we explored the suitability of nitrogen as reagent gas for the determination of brominated flame retardants (polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls (PBBs), allyl‐2,4,6‐tribromophenyl ether (ATE) and 2,3‐dibromopropyl‐2,4,6‐tribromophenyl ether (DPTE)) and halogenated natural products (for instance, methoxylated tetrabrominated diphenylethers and polybrominated hexahydroxanthene derivatives). An ion source temperature of 250°C and a nitrogen pressure of 7 Torr in the ion source gave the highest response for m/z 79 and 81 of virtually all investigated polybrominated compounds. Using these conditions, nitrogen‐mediated GC/ECNI‐MS usually gave higher sensitivity than the method with methane previously used in our lab. In addition, the ion source was not contaminated to the same degree and the lifetime of the filament was significantly increased. Moreover, the response factors of the different polybrominated compounds with the exception of 2,4,6‐tribromophenol were more uniform than with methane. Nitrogen is available at very high purity at relatively low price. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The present investigation describes the development and validation of a sensitive liquid chromatography–mass spectrometry/mass spectrometry (LC‐MS/MS) method for the estimation of dorsomorphin in rat plasma. A sensitive LC‐MS/MS method was developed using multiple reaction monitoring mode, with the transition of m/z (Q1/Q3) 400.2/289.3 for dorsomorphin and m/z (Q1/Q3) 306.2/236.3 for zaleplon. Chromatographic separation was achieved on a reverse phase Agilent XDB C18 column (100 × 4.6 mm, 5 µm). The mobile phase consisted of acetonitrile and 5 mm ammonium acetate buffer (pH 6.0) 90:10 v/v, at a flow rate of 0.8 mL/min. The effluence was ionized in positive ion mode by electrospray ionization (ESI) and quantitated by mass spectrometry. The retention times of dorsomorphin and internal standard were found to be 2.13 and 1.13 min, respectively. Mean extraction recovery of dorsomorphin and internal standard in rat plasma was above 80%. Dorsomorphin calibration curve in rat plasma was linear (r2 ≥ 0.99) ranging from 0.005 to 10 µg/mL. Inter‐day and intra‐day precision and accuracy were found to be within 85–115% (coefficient of variation). This method was successfully applied for evaluation of the oral pharmacokinetic profile of dorsomorphin in male Wistar rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Five well‐known active naphtodianthrone constituents of Hypericum perforatum (St John's Wort) extracts have been investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI‐FTICRMS) and ESI‐FTICRMSn. The studied compounds were hypericin, pseudohypericin, protohypericin, protopseudohypericin (biosynthetic precursors of the two former compounds, respectively) and isopseudohypericin (alkaline degradation product of pseudohypericin). Dissociation mass spectrometry measurements performed on the [M–H]? ion presented a variable efficiency as a function of the used activation mode. Sustained off‐resonance irradiation collision‐induced dissociation (SORI–CID) only led to a restricted number of fragment ions. In contrast, IRMPD ensured the detection of numerous product ions. Ions detected in ESI‐FTICRMS and ESI‐FTICRMSn experiments were measured with a very high mass accuracy (typically mass error is lower than 0.5 mDa at m/z close to 500) that allowed unambiguous formulae to be assigned to each signal observed in a mass spectrum. In spite of similar structures, specific fragmentation patterns were observed for the different compounds investigated. This study may be useful in the future to characterize in natural extracts these compounds (or derivatives of these compounds) by liquid chromatography/tandem mass spectrometry (LC/MS/MS) experiments by considering the MS/MS transitions highlighted in this paper. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Phytochelatins (PC) are cystein‐rich oligopeptides in plants for coordination with toxic metals and metalloids via their thiol groups. The composition, structure, and mass spectrometric fragmentation of arseno‐PC (As‐PC) with PC of different degree of oligomerization (PC2–PC5) in solution were studied using liquid chromatography coupled in parallel to inductively coupled plasma mass spectrometry and electrospray ionization quadrupole time‐of‐flight mass spectrometry. As‐PC were detected from As(PC2) to As(PC5) with an increasing number of isomers that differ in the position of thiol groups bound to As. Thermodynamic modeling supported the identification process in case of these isomers. Mass spectrometric fragmentation of the As‐PC does not follow the established pattern of peptides but is governed by the formation of series of As‐containing annular cations, which coordinate to As via S, N, or O. Structure proposals for 30 As‐PC fragment ions in the range m/z 147.92 to m/z 1290.18 are elaborated. Many of these fragment ions are characteristic to several As‐PC and may be suited for a screening for As‐PC in plant extracts. The mass spectrometric data offer the perspective for a future more sensitive determination of As‐PC by means of liquid chromatography tandem mass spectrometry with multiple reaction monitoring. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Summary In this investigation an analytical procedure for the determination of different organobromine compounds in motor car exhaust gases is developed in order to obtain a total balance of these compounds in this type of exhaust gas. For this purpose, adsorption sampling on Tenax GC combined with thermal desorption and a fast cold trap injection into the GC column system is used. A special capillary cold trap/thermodesorption system for a fast injection within 1 s is developed. The chromatographically separated fractions are identified by their retention times and elementspecific detection with a microwave plasma detector. Methyl bromide, 1,2-dibromoethane, and vinyl bromide are analysed in exhaust gases in cases where the gasoline contains 1,2-dibromoethane as an additive (leaded gasoline). The analysed bromine contents, which correspond to these organobromine compounds, are in the range of 90–190 g/m3, 15–85 g/m3, and 5–20 g/m3, respectively. The portion of the organobromine compounds is 22–44% of the total bromine which is emitted by the exhaust gases. The other portion contains mainly inorganic particulate bromide, which can be separated by filters. The concentration of the organobromine compounds decreases with increasing motor temperature. After conversion into 2-bromocyclohexanol and after gas chromatographic separation HBr is detected to be 5.8 g bromine per m3 exhaust gas, which corresponds to approximately 1% of the total bromine emission. 1,2-Dichloroethane is analysed in the range of 5–35 g Cl/m3, whereas the concentration of tetraalkyl lead in the exhaust gases is less than the detection limit of 6.7 g Pb/m3. The average bromine/lead ratio found in the filterable portion of the exhaust gases is 0.30 (by weight); the same ratio calculated for total bromine emission including the organobromine compounds is 0.47. Compared with the bromine/ lead ratio in gasoline of 0.39 this means that at least 17% of the total lead in the gasoline is not directly emitted with the motor car exhaust gases.
Analyse von bromorganischen Verbindungen und HBr in Autoabgasen mit einem GC/Mikrowellenplasma-System
  相似文献   

13.
A new analytical technique for the structural elucidation of four representative phenidate analogues possessing a secondary amine residue, which leads to a major/single amine‐representative fragment/product ion at m/z 84 both in their GC‐EI‐MS and LC‐ESI‐MS/MS spectra, making their identification ambiguous, was developed. The method is based on “in vial” chemical derivatization with isobutyl chloroformate in both aqueous and organic solutions, followed by liquid chromatography‐electrospray ionization mass spectrometry (LC‐ESI‐MS/MS). The resulting carbamate derivatives promote rich fragmentation patterns with full coverage of all substructures of the molecule, enabling detailed structural elucidation and unambiguous identification of the original compounds at low ng/mL levels.  相似文献   

14.
A sensitive and rapid liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method has been developed and validated for the determination of asperosaponin VI in beagle dog plasma using glycyrrhizic acid as the internal standard (IS). Plasma samples were simply pretreated with methanol for deproteinization. Chromatographic separation was performed on a Hedera ODS‐2 column using mobile phase of methanol–10 mm ammonium acetate buffer solution containing 0.05% acetic acid (71:29, v/v) at a flow rate of 0.38 mL/min. Asperosaponin VI and the IS were eluted at 2.8 and 1.9 min, respectively, ionized in negative ion mode, and then detected by multiple reaction monitoring. The detection used the transitions of the deprotonated molecules at m/z 927.5 → 603.4 for asperosaponin VI and m/z 821.4 → 645.4 for glycyrrhizic acid (IS). The assay was linear over the concentration range of 0.15–700 ng/mL and was successfully applied to a pilot pharmacokinetic study in beagle dogs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Combined detection by inductively coupled mass spectrometry (ICP-MS) for elemental information (quantification) and electrospray ionization mass spectrometry (ESI-MS) for molecular information (identification) by means of splitting of the eluent after chromatographic separation is a suitable means of analysis for unknown and not commercially available arsenic species. Simultaneous parallel ESI-MS and ICP-MS detection was applied to identify possible metabolites during the interaction of arsenobetaine (AsB) with natural zeolites. AsB, mainly produced by freshwater and marine organisms, is known to be a candidate of low toxicity. To estimate the possible toxicological risk originating from AsB in contact with natural and synthetic zeolites, small particles of a naturally occurring zeolite were mixed with an AsB solution. After a contact time of 56 days the degradation of AsB proceeded with different yields in the case of the natural Mexican zeolites. In contrast, no additional components were detected in the control samples. It was possible to clearly identify the degradation products dimethylarsinate (m/z 139) and dimethylarsinoylacetate (m/z 181) by comparison of the peaks monitored by ESI-MS and ICP-MS. In some other cases the unknown arsenic species could not be identified so clearly from their molecular masses.  相似文献   

16.
A simple, practical, accurate and sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and fully validated for the quantitation of guanfacine in beagle dog plasma. After protein precipitation by acetonitrile, the analytes were separated on a C18 chromatographic column by methanol and water containing 0.1% (v/v) formic acid with a gradient elution. The subsequent detection utilized a mass spectrometry under positive ion mode with multiple reaction monitoring of guanfacine and enalaprilat (internal standard) at m/z 246.2 → 159.0 and m/z 349.2 → 205.9, respectively. Good linearity was obtained over the concentration range of 0.1–20 ng/mL for guanfacine in dog plasma and the lower limit of quantification of this method was 0.1 ng/mL. The intra‐ and inter‐day precisions were <10.8% relative standard deviation with an accuracy of 92.9–108.4%. The matrix effects ranged from 89.4 to 100.7% and extraction recoveries were >90%. Stability studies showed that both analytes were stable during sample preparation and analysis. The established method was successfully applied to an in vivo pharmacokinetic study in beagle dogs after a single oral dose of 4 mg guanfacine extended‐release tablets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Summary Capillary gas chromatography coupled to both mass spectrometry (GCMS) and atomic emission spectroscopy (GC-AED) was studied for the analysis of bromine-containing alkylbenzenes present in sludge from a nickel refinery. Owing to the high abundance of chlorinated compounds, location of the brominated species was difficult based on GC-MS with electron ionization. In contrast, GC-MS with negative chemical ionization (GC-NCIMS) and GC-AED enabled bromine-selective detection and were utilized for an effective location of the brominated compounds. Bromine-selective detection by GC-NCIMS relied on the monitoring of Br (m/z 79/81) with CH4 as ionization gas, while atomic emission (827.2 nm) from a helium plasma was utilized in the case of GC-AED. While GC-NCIMS was 30–500 times more sensitive than GC-AED, the latter technique was superior for quantitative purposes. Because the bromine response of the AED was independent of molecular structure, quantification was possible without reference material.  相似文献   

18.
A sensitive and selective liquid chromatographic tandem mass spectrometric (LC–MS–MS) method was developed for simultaneous identification and quantification of tamsulosin and dutasteride in human plasma, which was well applied to clinical study. The method was based on liquid–liquid extraction, followed by an LC procedure with a Gemini C-18, 50 mm × 2.0 mm (3 μm) column and using methanol:ammonium formate (97:3, v/v) as the mobile phase. Protonated ions formed by a turbo ionspray in positive mode were used to detect analytes and internal standard. MS–MS detection was by monitoring the fragmentation of 409.1 → 228.1 (m/z) for tamsulosin, 529.3 → 461.3 (m/z) for dutasteride and 373.2 → 305.3 (m/z) for finasteride (IS) on a triple quadrupole mass spectrometer. The lower limit of quantification for both tamsulosin and dutasteride was 1 ng mL?1. The proposed method enables the unambiguous identification and quantification of tamsulosin and dutasteride for clinical drug monitoring.  相似文献   

19.
The application of on-line photochemistry with flow injection (FI) and liquid chromatography (LC) in conjunction with atmospheric pressure electrospray mass spectrometry (LC-APESI-MS) for the identification of similar indole derivatives is reported here. The photo-transformation of the indole compounds is strongly affected by the substituent groups on the aromatic and heterocyclic rings. Upon photolysis for 2.5 min, the mass spectrum of tryptamine (Try) which has no OH substituent on the aromatic ring does not differ greatly from that obtained without photolysis. However, after photolysis of serotonin (Ser) which has one OH group on C5 of the aromatic ring, the mass spectrum indicates the formation of dimers and higher molecular weight ions. The fragmentation pattern of 5-hydroxytryptophol (Phol) without photolysis resembles that of Ser with a base peak of m/z 160. Upon photolysis using MeOH-H2O (10/90), Phol is found to form a base peak at m/z 375 (100%) and a major peak at m/z 214 (66%) in addition to other ions with lower abundance. Melatonin (Mel) and tryptophan (Phan) upon photolysis are found to form high molecular weight ions with a relative low abundance. The mass spectrum of indole-3-acetic acid (Inaa) with on-line photolysis also shows different ions that are not formed without photolysis.  相似文献   

20.
Reversed-phase liquid chromatography was coupled to a multi-detection system composed of ultraviolet (UV) detection, evaporative laser scattering detection (ELSD) and inductively coupled plasma mass spectrometry (ICP-MS). By applying the principle of post-column solvent compensation, the organic modifier content was kept constant in ELSD and ICP-MS under gradient elution. Chlorine ((35)Cl), bromine ((79)Br and (81)Br) and sulfur ((34)S) were monitored in several pharmaceutical compounds. The limit of quantitation (LOQ) was 80 ng/mL for chlorine (chlorpropamide) and 2 ng/mL for bromine (bromazepam). Calibration graphs were linear from 1.0 microg/mL to 100 microg/mL for chlorpropamide (r(2) 0.990) and from 10 ng/mL to 500 ng/mL for bromazepam (r(2) 0.996). The low LOQ value for bromine allows to quantify bromine in pharmaceutical samples below the 0.05% level of the active pharmaceutical ingredient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号