首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chenyu Li  Ligang Chen  Wei Li 《Mikrochimica acta》2013,180(11-12):1109-1116
We report on a method for the extraction of organophosphorus pesticides (OPPs) from water samples using mixed hemimicelles and magnetic titanium dioxide nanoparticles (Fe3O4@TiO2) modified by cetyltrimethylammonium. Fe3O4@TiO2 nanoparticles were synthesized by a hydrothermal process and then characterized by scanning electron microscopy and Fourier transform IR spectrometry. The effects of the quantity of surfactant, extraction time, desorption solvent, pH value, extraction volume and reuse of the sorbent were optimized with respect to the extraction of OPPs including chlorpyrifos, dimethoate, and trichlorfon. The extraction method was applied to analyze OPPs in environmental water using HPLC along with UV detection. The method has a wide linear range (100–15,000 ng L?1), good linearity (r?>?0.999), and low detection limits (26–30 ng L?1). The enrichment factor is ~1,000. The recoveries (at spiked levels of 100, 1,000 and 10,000 ng L?1) are in the range of 88.5–96.7 %, and the relative standard deviations range from 2.4 % to 8.7 %.
Figure
Schematic illustration of the preparation of CTAB coated Fe3O4@TiO2 and its application as SPE sorbent for enriching OPPs  相似文献   

2.
Magnetic solid-phase extraction (MSPE) coupled with gas chromatography–mass spectrometry was applied for the analysis of organophosphorus pesticides (OPPs) in water samples. We chose C18-functionalized Fe3O4@mSiO2 microspheres as the magnetic sorbents to extract and enrich OPPs from water samples with the advantages of good solubility in water, large surface area and fast separation ability. In this study, six kinds of OPPs were analyzed and various parameters of MSPE procedure, including eluting solvent, the amount of magnetic absorbents and extraction time were optimized. Validation experiments showed that the optimized method had good linearity with correlation coefficients r 2 > 0.98 and satisfactory precision with the relative standard deviation ≤10.7 %. The limits of detection were 1.8–5.0 μg L?1 and the limits of quantification ranged from 6.1 to 16.7 μg L?1. We concluded that the proposed method was successfully applied to analyze OPPs in real water samples and the results indicated that it had the advantages of simplicity, convenience and efficiency.  相似文献   

3.
A mixed anionic–cationic surfactant cloud point extraction (CPE) has been developed using sodium dodecyl sulfate (SDS) and tetrabutylammonium bromide (TBABr) for the extraction and preconcentration of organophosphorus pesticides (OPPs) at ambient temperature before analysis by high-performance liquid chromatography. The studied OPPs were azinphos-methyl, parathion-methyl, fenitrothion, diazinon, chlorpyrifos, and prothiophos. The optimum conditions of the mixed anionic–cationic CPE were 50 mmol L−1 SDS, 100 mmol L−1 TBABr, and 10% (w/v) NaCl. The extracted OPPs were successfully separated within 11 min using the conditions of a Waters Symmetry C8 column, a flow rate of 0.8 mL min−1, a gradient elution of methanol and water, and detection at 210 nm. Linearity was found over the range 0.05–5 μg mL−1, with the correlation coefficients higher than 0.996. The enrichment factor of the target analytes was in the range 6–11, which corresponds to their limits of detection from 1 to 30 ng mL−1. High precisions (intra-day and inter-day) were obtained with relative standard deviation <1.5% (t R) and 10% (peak area). Accuracies (% recovery) of the different spiked OPP concentrations were 82.7–109.1% (water samples) and 80.3–113.3% (fruit juice samples). No contamination by the OPPs was observed in any studied samples.  相似文献   

4.
In the present work, a novel nanocomposite (NC) was prepared by reinforcing montmorillonite (MMT) into polypyrrole-nylon-6 (PPy-N6) hybrid through in situ oxidative polymerisation of PPy in the MMT-N6 mixture. The prepared novel NC was deposited as a thin layer coating on the stir bar substrate by solvent exchange method. Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and energy dispersive X-ray spectroscopy were applied to characterise the prepared NCs. The prepared stir bar based on MMT/PPy/N6 NC was applied for sorptive extraction of some organophosphorous pesticides (OPPs) in river water samples with detection by gas chromatography-mass spectrometry (GC-MS). The effect of MMT doping level in the NC and also the effect of PPy hybridation with N6 on the coating extraction capability were studied. Central composite design was used to optimise and study the effects of influencing factors on the stir bar sorptive extraction efficiency such as salt content, pH, extraction time, desorption time, desorption solvent and its volume. The method optimisation step was performed using gas chromatography-flame ionisation detector, while the method validation was conducted using GC-MS. Limits of detection of the developed method are in the range of 0.05–0.3 μg L?1 and the linear dynamic ranges are in the range of 0.3–1000 and 1–1000 μg L?1, respectively. The intra-day precision (RSD %) of developed method with four replicates varied between 5.4 and 8.2% for distilled water spiked at 100 μg L?1. The applicability of the developed method was examined by extraction and determination of OPP compounds in river water samples, indicating the relative recoveries in the range of 80.3–95.3%.  相似文献   

5.
A simple and fast method based on magnetic separation for extraction of pyrethroid pesticides including beta-cyfluthrin, cyhalothrin and cyphenothrin from environmental water samples has been established. Magnetic titanium dioxide was used as sorbent, which was synthesized by coating TiO2 on Fe3O4 in liquid-state co-precipitation method. The sorbent has been characterized by scanning electron microscopy and Fourier-transform infrared spectrometry, and the magnetic properties were investigated with physical property measurement system. Various parameters affecting the extraction efficiency were evaluated to achieve optimal condition and decrease ambiguous interactions. The analytes desorbed from the sorbent were detected by high performance liquid chromatography. Under the optimal condition, the linearity of the method is in the range of 25–2,500 ng L?1. The detection limits and quantification limits of pyrethroid pesticides are in the range of 2.8–6.1 ng L?1 and 9.3–20.3 ng L?1, respectively. The relative standard deviations of intra- and inter-day tests ranging from 2.5 to 7.2 % and from 3.6 to 9.1 % were obtained. In all three spiked levels (25, 250 and 2,500 ng L?1), the recoveries of pyrethroid pesticides were in the range of 84.5–94.1 %. The proposed method was successfully applied to determine pyrethroids in three water samples. Cyphenothrin was found in one river water near farmlands, and its concentration was 52 ng L?1.  相似文献   

6.
Total dissolved and labile concentrations of Cd(II), Cu(II), Ni(II) and Pb(II) were determined at six locations of the Bourgas Gulf of the Bulgarian Black Sea coast. Solid phase extraction procedure based on monodisperse, submicrometer silica spheres modified with 3-aminopropyltrimethoxysilane followed by the electrothermal atomic absorption spectrometry (ETAAS) was developed and applied to quantify the total dissolved metal concentrations in sea water. Quantitative sorption of Cd, Cu, Ni and Pb was achieved in the pH range 7.5–8, for 30?min, adsorbed elements were easily eluted with 2?mL 2?mol?L?1 HNO3. Since the optimal pH for quantitative sorption coincides with typical pH of Black Sea water (7.9–8.2), on-site pre-concentration of the analytes without any additional treatment was possible. Detection limits achieved for total dissolved metal quantification were: Cd 0.002?µg?L?1, Cu 0.005?µg?L?1, Ni 0.03?µg?L?1, Pb 0.02?µg?L?1 and relative standard deviations varied from 5–13% for all studied elements (for typical Cd, Cu, Ni and Pb concentrations in Black Sea water). Open pore diffusive gradients in thin films (DGT) technique was employed for in-situ sampling and pre-concentration of the sea water and in combination with ETAAS was used to determine the proportion of dynamic (mobile and kinetically labile) species of Cd(II), Cu(II), Ni(II) and Pb(II) in the sea water. Obtained results showed strong complexation for Cu and Pb with sea water dissolved organic matter. The ratios between DGT-labile and total dissolved concentrations found for Cu(II) and Pb(II) were in the range 0.2–0.4. For Cd and Ni, these ratios varied from 0.6 to 0.8, suggesting higher degree of free and kinetically labile species of these metals in sea water.  相似文献   

7.
An ultra-preconcentration technique composed of solid-phase extraction (SPE) and dispersive liquid–liquid microextraction (DLLME) coupled with gas chromatography–flame photometric detection (GC–FPD) was used for determination of thirteen organophosphorus pesticides (OPPs) including phorate, diazinon, disolfotane, methyl parathion, sumithion, chlorpyrifos, malathion, fenthion, profenphose, ethion, phosalone, azinphose-methyl and co-ral in aqueous samples. The analytes were collected from large volumes of aqueous solutions (100 mL) into 100 mg of a SPE C18 sorbent. The effective variables of SPE including type and volume of elution solvent, volume and flow rate of sample solution, and salt concentration were investigated and optimized. Acetone was selected as eluent in SPE and disperser solvent in DLLME and chlorobenzene was used as extraction solvent. Under the optimal conditions, the enrichment factors were between 15,160 and 21,000 and extraction recoveries were 75.8–105.0%. The linear range was 1–10,000 ng L?1 and limits of detection (LODs) were between 0.2 and 1.5 ng L?1. The relative standard deviations (RSDs) for 50 ng L?1 of OPPs in water with and without an internal standard, were in the range of 1.4–7.9% (n = 5) and 4.0–11.6%, respectively. The relative recoveries of OPPs from well and farm water sat spiking levels of 25 and 250 ng L?1 were 88–109%.  相似文献   

8.
A magnetic solid-phase extraction (MSPE) method coupled to high performance liquid chromatography with UV (HPLC-UV) was proposed for the determination of organophosphorus pesticides (OPPs) at trace levels in environmental water samples. The ternary nanocomposite of graphene-carbon nanotube-Fe3O4 (G-CNT-Fe3O4) has been synthesised via a simple solvothermal process and the resultant material was characterised by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Significant factors that affect the extraction efficiency, such as amount of magnetic nanocomposite, extraction time, ionic strength, solution pH and desorption conditions were carefully investigated. The results demonstrated that the proposed method had a wide dynamic linear range (0.005–200 ng mL?1), good linearity (R2 = 0.9955–0.9996) and low detection limits (1.4–11 pg mL?1). High enrichment factors were achieved ranging from 930 to 1510. The results show that the developed method is suitable for trace level monitoring of OPPs in environmental water samples.  相似文献   

9.
A single-drop microextraction (SDME) procedure with a modified microsyringe was developed for the analysis of six organophosphorus pesticides (OPPs) in water. Microsyringe was modified by attaching a 2-mm cone onto the needle tip end. The conditions affecting SDME performance including microextraction solvent, stirring speed, extraction time, ionic strength and sample pH were optimized. Under the optimized conditions, the linear ranges of the SDME with ethion as internal standard were 0.05–50 μg L?1 (except for dimethoate 5–5,000 μg L?1) and limits of detection (LOD) were 0.012–0.020 μg L?1 (except for dimethoate 0.45 μg L?1). Recoveries of six pesticides were in the range of 70.6–107.5 % with relative standard deviation lower than 6.0 %. The modified method is simple, rapid and sensitive, and acceptable in the analysis of OPPs pesticides in water samples.  相似文献   

10.
A gas chromatography–tandem mass spectrometry (GC–MS/MS) method has been developed for the determination of selected pharmaceutical residues (carbamazepine, salicylic acid, clofibric acid, ibuprofen, 2-hydroxy-ibuprofen, fenoprofen, naproxen, ketoprofen, diclofenac, and triclosan) in sewage influent and roughly primary-treated effluent. The method involved solid-phase extraction (SPE) with polymeric sorbents, and two SPE cartridges were compared for the extraction and elution of the targeted compounds in complex matrices. A successful chemical derivatization of carbamazepine and acidic compounds using N,O-bis(trimethylsilyl) trifluoroacetamide +10% trimethylchlorosilane is also described. The quantification limits of the analytical procedure ranged from 30 to 60?ng?L?1 for 500?mL of wastewater. The best recovery rates (72–102%) in spiked effluent samples were obtained with Phenomenex Strata-X? cartridges. Detection limits (S/N?=?3) were estimated at between 1 and 18?ng?L?1. The reported GC–MS/MS method significantly reduces the strong matrix effects encountered with more expensive LC-MS/MS techniques. Application of the developed method showed that most selected analytes were detected at concentrations ranging from low µg?L?1 to trace level ng?L?1 in Montreal's wastewater treatment plant effluent and influent, as well as in the receiving waters at more than 8?km downstream of the effluent outfall. The rugged alternative analytical method is suitable for the simultaneous analysis of carbamazepine and pharmaceutical acidic residues in wastewater samples from influents and effluents that have undergone rough primary treatment.  相似文献   

11.
In this work, magnetic solid-phase extraction based on sodium dodecyl sulfate-coated Fe3O4 nanoparticles has been successfully applied for extraction and preconcentration of trace amounts of nystatin from water and vaccine samples prior to high-performance liquid chromatography–ultraviolet detection. Various experimental parameters affecting extraction and recovery of the analyte, such as the amount of sodium dodecyl sulfate, pH of the sample solution, salt concentration, extraction time, sample volume and desorption conditions, were systematically studied and optimized. Under optimized conditions, nystatin was quantitatively extracted. Proper linear range with good coefficient of determination, (R 2 > 0.99) and limit of detection and quantification (based on signal-to-noise ratios of 3 and 10) of 2.0 and 5.0 µg L?1, over the investigated concentration range (5–700 µg L?1), were obtained, respectively. The intra-day and inter-day relative standard deviations at 50 µg L?1 level of NYS were 1.4 and 4.5% based on six replicate determinations. The accuracy of the method was evaluated by recovery measurements on spiked samples. Suitable recoveries of 96–102 and 26–44% were achieved (at spiked levels of 50, 300 and 500 µg L?1) for water and vaccine samples, respectively.  相似文献   

12.
A high-performance liquid chromatography separation coupled with mass spectrometry via an electrospray interface is proposed for the determination of the hydroxylated derivatives of polycyclic aromatic hydrocarbons (OH-PAHs) in treated and untreated wastewaters and suspended solids from sewage treatment plants (STPs). The developed SPE procedure was applied to spiked wastewater samples, with recovery yields (1000?mL; 100?ng?L?1 spiking level) in the 65–87% (RSD: 6–12%) range for the selected OH-PAHs. The limits of detections ranged between 0.3 and 3.2?ng?L?1, depending on the selected compound and on the investigated matrix. The proposed method was applied to the determination of the selected analytes in real samples from a sewage-treatment plant (STP). The investigated OH-PAHs were detected mainly in the particulate fraction. The exhibited mean concentrations of positive samples (as the sum of dissolved and particulate matter) in the STP final effluent ranged from 15 to 68?ng?L?1.  相似文献   

13.
《Analytical letters》2012,45(13):2075-2088
For the first time, a simple method for magnetic stirring-assisted dispersive suspended microextraction has been developed for the determination of three fungicides (azoxystrobin, diethofencarb, and pyrimethanil) in water and wine samples. The method is based on the solidification of a floating organic droplet coupled with high performance liquid chromatography. In the proposed method, the low toxicity solvent 1-dodecanol was used as the extractant. Both the extraction and phase separation process were performed with magnetic stirring. No centrifugation step was involved. After separating the two phases, the extraction solvent droplet was easily collected through solidification at lower temperature. Important parameters such as the kind and volume of organic extraction solvent, extraction and restoration speed, extraction and restoration time, and salt concentration were optimized. Under the optimal conditions, the limits of detection for the analytes varied from 0.14 to 0.26 µg L?1. The enrichment factors ranged from 125–200. The linearity ranges were 1–2000 µg L?1, yielding correlation coefficients (r) higher than 0.9990. The relative standard deviation (n = 6) at two spiked level of 0.2 µg mL?1 and 4 µg L?1 varied between 2.2% and 7.8%. Finally, the developed technique was successfully applied to determine target fungicides in real water and wine samples, where the obtained recoveries ranged from 83.8–105.3%  相似文献   

14.
A polymeric ionic liquid modified stainless steel wire for solid‐phase microextraction was reported. Mercaptopropyl‐functionalized stainless steel wire that was formed by co‐condensation of tetramethoxysilane and 3‐mercaptopropyltrimethoxysilane via a sol‐gel process, which is followed by in situ surface radical chain‐transfer polymerization of 1‐vinyl‐3‐octylimidazolium hexafluorophosphate to result in polymeric ionic liquid modified stainless steel wire. The fiber surface was characterized by field emission scanning electron microscope equipped with energy dispersive X‐ray analysis. Coupled with GC, extraction performance of the fiber was tested with phenols and polycyclic aromatic hydrocarbons as model analytes. Effects of extraction and desorption conditions were investigated systematically in our work. RSDs for single‐fiber repeatability and fiber‐to‐fiber reproducibility were less than 7.34 and 16.82%, respectively. The calibration curves were linear in a wide range for all analytes and the detection limits were in the range of 10–60 ng L?1. Two real water samples from the Yellow River and local waterworks were applied to test the as‐established solid‐phase microextraction–GC method with the recoveries of samples spiked at 10 μg L?1 ranged from 83.35 to 119.24%. The fiber not only exhibited excellent extraction efficiency, but also very good rigidity, stability and durability.  相似文献   

15.
Wang  Xia  Xu  Qing-Cai  Cheng  Chuan-Ge  Zhao  Ru-Song 《Chromatographia》2012,75(17):1081-1085

In this paper, a novel mixed ionic liquids-dispersive liquid–liquid microextraction method was developed for rapid enrichment and determination of environmental pollutants in water samples. In this method, two kinds of ionic liquids, hydrophobic ionic liquid and hydrophilic ionic liquid, were used as extraction solvent and disperser solvent, respectively. DDT and its metabolites were used as model analytes and high-performance liquid chromatography with ultraviolet detector for the analysis. Factors that may affect the extraction recoveries, such as type and volume of extraction solvent (hydrophobic ionic liquid) and disperser solvent (hydrophilic ionic liquid), extraction time, sample pH and ionic strength, were investigated and optimized. Under the optimum conditions, the linear range was 1–100 μg L−1, limits of detection could reach 0.21–0.49 μg L−1, and relative standard deviation was 6.01–8.48 % (n = 7) for the analytes. Satisfactory results were achieved when the method was applied to analyze the target pollutants in environmental water samples with spiked recoveries over the range of 85.7–106.8 %.

  相似文献   

16.
ABSTRACT

In this work, a novel layered sorbent for microextraction by packed sorbent (MEPS) was introduced, which has been prepared by coating graphene oxide/polyamide (GO/PA) nanocomposite (NC) onto cellulose paper through solvent exchange method. Scanning electron microscopy (SEM) was applied to investigate the surface characteristic and morphology of PA and GO/PA NC coated on cellulose paper. The prepared MEPS device was used for extraction of organophosphorous pesticides (OPPs) including chlorpyrifos, fenthion, fenithrothion, ethion, edifenphos and phosalone in environmental aqueous samples followed by detection using gas chromatography-flame ionisation detector (GC-FID). Important parameters affecting the MEPS method including pH of sample solution, extraction draw-discard cycles, sorbent layers, desorption solvent volume and desorption draw-eject number were studied and optimised using central composite design (CCD). Based on the method validation, limits of detection (LODs) were in the range of 0.2–1 µg L?1. The calibration graphs for chlorpyrifos, fenthion and edifenphos are linear in the concentration range of 1 to 500 µg L?1; for ethion and phosalone are linear in the range of 1–1000 µg L?1 and for fenithrothion is linear in the range of 3–1000 µg L?1. The method precision (RSD %) with six replicates determinations was in the range of 3 to 9.4 % and 3.9 to 11.9% for distilled water and spiked river water sample, respectively, at the concentration level of 300 µg L?1 . The developed method was applied successfully to determine OPP compounds in river, dam and tap water samples; accordingly, the relative recoveries (RR%) were obtained in the range of 77.8 to 113.3%.  相似文献   

17.
A rapid and sensitive method has been developed for the determination of biphenyl and biphenyl oxide in water samples using dispersive liquid–liquid microextraction followed by gas chromatography. This method involves the use of an appropriate mixture of extraction solvent (8.0?µL tetrachloroethylene) and disperser solvent (1.0?mL acetonitrile) for the formation of cloudy solution in 5.0?mL aqueous sample containing biphenyl and biphenyl oxide. After extraction, phase separation was performed by centrifugation and biphenyl and biphenyl oxide in sedimented phase (5.0?±?0.3?µL) were determined by gas chromatography-flame ionisation (GC-FID) system. Type of extraction and disperser solvents and their volumes, salt effect on the extraction recovery of biphenyl and biphenyl oxide from aqueous solution have been investigated. Under the optimum conditions and without salt addition, the enrichment factors for biphenyl and biphenyl oxide were 819 and 785, while the extraction recovery were 81.9% and 78.5%, respectively. The linear range was (0.125–100?µg L?1) and limit of detection was (0.015?µg?L?1) for both analytes. The relative standard deviation (RSD, n?=?4) for 5.0?µg?L?1 of analytes were 8.4% and 6.7% for biphenyl and biphenyl oxide, respectively. The relative recoveries of biphenyl and biphenyl oxide from sea, river water and refined water (Paksan company) samples at spiking level of 5.0?µg?L?1 were between 85.0% and 100 %.  相似文献   

18.
Dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME–SFO) was for the first time combined with field‐amplified sample injection (FASI) in CE to determine four β2‐agonists (cimbuterol, clenbuterol, mabuterol, and mapenterol) in bovine urine. Optimum BGE consisted of 20 mM borate buffer and 0.1 mM SDS. Using salting‐out extraction, β2‐agonists were extracted into ACN that was then used as the disperser solvent in DLLME–SFO. Optimum DLLME–SFO conditions were: 1.0 mL ACN, 50 μL 1‐undecanol (extraction solvent), total extraction time 1.5 min, no salt addition. Back extraction into an aqueous solution (pH 2.0) facilitated direct injection of β2‐agonists into CE. Compared to conventional CZE, DLLME–SFO–FASI–CE achieved sensitivity enhancement factors of 41–1046 resulting in LODs in the range of 1.80–37.0 μg L?1. Linear dynamic ranges of 0.15–10.0 mg L?1 for cimbuterol and 15–1000 μg L?1 for the other analytes were obtained with coefficients of determination (R2) ≥ 0.9901 and RSD% ≤5.5 (n = 5). Finally, the applicability of the proposed method was successfully confirmed by determination of the four β2‐agonists in spiked bovine urine samples and accuracy higher than 96.0% was obtained.  相似文献   

19.
Novel ultrasonically enhanced supramolecular solvent microextraction (USESSM) then high-performance liquid chromatography with ultraviolet detection have been used for extraction and determination of phthalates in water and cosmetics. Coacervates consisting of decanoic acid-based nano-structured aggregates, specifically reverse micelles, have been used the first time as solvents for ultrasound-assisted emulsification microextraction (USAEME). Sonication accelerated mass transfer of the target analytes into the nano-structured solvent from the aqueous sample, thus reducing extraction time. Several conditions affecting extraction efficiency, for example the concentrations of major components of the supramolecular solvent (tetrahydrofuran and decanoic acid), sample solution pH, salt addition, and ultrasonication time, were investigated and optimized. Under the optimum conditions, preconcentration of the analytes ranged from 176 to 412-fold and the linear range was 0.5–100 μg?L?1, with correlation coefficients (R 2)?≥?0.9984. The detection sensitivity of the method was excellent, with limits of detection (LOD, S/N?=?3) in the range 0.10–0.70 μg?L?1 and precision in the range 4.1–11.7 % (RSD, n?=?5). This method was successfully used for analysis of phthalates in water and cosmetics, with good recovery of spiked phthalates (91.0–108.5 %).  相似文献   

20.
In the present study, room-temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hexafluorophosphate was used as extraction solvent in a liquid–liquid microextraction (LLME) procedure followed by liquid chromatography for determining 4-nonylphenol (4-NP) and 4-tert-octylphenol (4-t-OP) in environmental water samples. RTIL-based LLME was a simple, inexpensive, and fast sample preparation method, and its parameters such as extraction time, addition of salt, selection of phase ratio, and pH value were optimized. The optimized method had acceptable limits of detection (LOD) and a precision of 2?µg?L?1 and 8.1% for 4-NP and 0.6?µg?L?1 and 3.7% for 4-t-OP, respectively. The proposed method was successfully applied in river water and effluent from a sewage-treatment plant, and the recoveries spiked at 6?µg?L?1 and 25?µg?L?1 levels were in the range of 82–113%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号