首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proposed method is a simple process for the determination of trace amount of thallium(I) in the environmental wastewater samples by electrothermal atomic absorption spectrometry. The wastewater samples were obtained from the environment of a cement plant and subjected to a simple treatment, such as adjusting pH and masking the interfering ions, to prepare for the flotation process in which the thallium(I) content was floated as an ion-association complex using iodide and Rhodamine B at the interface of aqueous/cyclohexane layers. The floated layer was then separated and dissolved in 2 ml of a solution, which was 1% to H2SO4 and 50% to methanol, respectively. Aliquots of 10-microl of this solution were subjected to the graphite furnace to determine the thallium(I) content. The flotation process can be carried in a weak acidic medium in which the interfering effects owing to certain metal ions were eliminated by masking them as neutral citrate chelates. The dynamic range for the determination was found to be 1.0 x 10(-8) - 1.0 x 10(-7) mol l(-1). The RSD was 3.2% and the DL was 2.5 x 10(-9) mol l(-1) (calculated as 3SD of the blank). The reliability of the method is demonstrated by the analysis of a synthetic wastewater in which the recovery was found to be 94%.  相似文献   

2.
The parameters of analytical procedures developed for direct ETAAS determination of Pb in wine are discussed. Atomic absorption spectrometers based on transversal and longitudinal Zeeman effect, wall and integrated platform atomization with two main approaches: (i) measurements in the presence of modifier and (ii) measurements without using any modifier are compared. The optimal temperature programs are defined according to the pre-treatment and atomization curves constructed in the presence of different types of wines. For all investigated instrumental systems, 1:1 dilution of wine sample with 0.2 mol L−1 HNO3 is recommended. Matrix interferences observed, call for standard addition calibration method for Pb quantification in wines. The detection limit (3σ) achieved for wine diluted in the ratio of 1:1 varied from 0.8 to 1.9 μg L−1 depending on the instrument used. The relative standard deviation for the concentration range of 10 to 80 μg L−1 Pb in wine is typically between 4–8%. The accuracy of the analytical procedures recommended was confirmed by comparing the results obtained with those found for wine samples previously digested with HNO3-H2O2 mixture, by added/found method and by parallel analysis using different instruments. A total of 66 wine samples from different regions of Macedonia were analyzed.   相似文献   

3.
A method for determination of trace amounts of gold in environmental samples (rocks, soils, sediments, and waters) by atomic absorption spectrometry with electrothermal atomization (ETAAS) after preconcentration using a chelating sorbent Spheron Thiol 1000 is described. The method accurately determines gold between 0.001 and several tens of grams per ton in samples having complex variations in mineralogy. Pulverized samples are roasted at 650°C to oxidize any sulfide and/or carbonaceous material. Samples are then subjected to a series of acid treatments to eliminate any silica matrix and to dissolve the sample. The Spheron Thiol 1000 is added to the sample solution, and then with sorbed gold is filtered out, washed, and ignited at 550°C. The residue is dissolved in aqua regia, evaporated, dissolved in distilled water, transferred to a volumetric flask, and analyzed by ETAAS.The limits of detection of gold, based on the 3 definition, were 0.5 ng g–1 for 10-g samples (rocks, sediments, soils) and 0.05 ng mL–1 for 1-L water samples. Precision of determination expressed by the relative standard deviation varied from 2.9% to 16.4%. The accuracy of the method is verified by analysis of certified reference materials. The obtained analytical results are in good agreement with attested values. The developed method was applied for gold determination in environmental samples affected by the acidification (acid mine drainage which is mainly a product of pyrite oxidation) from an open quartzite mine in the obov region situated NE of the city of Banská tiavnica (Slovakia).  相似文献   

4.
The examination of the effect of interfering ions on the analytical signal of ruthenium measured by electrothermal atomic absorption spectrometry was initially performed in this work. The complexes of ruthenium(III) with thiosemicarbazide (TSd) and acetaldehyde thiosemicarbazone (AcTSn) were prepared and imprinted in polymeric network. The ion-imprinted polymers were synthesized by copolymerization of methacrylic acid, as functional monomer and ethylene glycol dimethacrylate, as crosslinking agent in the presence of 2,2-azobisisobutyronitrile as initiator. The effects of sample volume, pH, and flow rate on the extraction of analyte were studied in dynamic mode. The optimum pH for quantitative retention of ruthenium on each of the studied sorbents was 7.5 ± 0.5. The elution of analyte was completed with 0.2 mol L−1 thiourea in 0.2 mol L−1 HCl. The effect of matrix ions on ruthenium(III) separation process was studied. The analytical performance of the Ru-TSd polymer in the presence of competing ions was better than Ru-AcTSn polymer, considering recovery of analyte, reproducibility of results, selectivity coefficients, and sorbent capacity. The detection limit of the proposed method (0.16 ng mL−1 on Ru-TSd and 0.25 ng mL−1 on Ru-AcTSn) is lower in comparison with the previously published methods. The developed separation method was successfully applied to the determination of trace amounts of ruthenium in spiked water samples, sludge, grass, and human hair.  相似文献   

5.
Nickel (? 0.11 μg l?1) in water samples is determined by graphite furnace atomic absorption spectrometry after preconcentration from 3 l of sample on a column of Cellex CM and elution with 20 ml of 2 M nitric acid. High concentrations of some other cations interfere, but the concentrations present in river and tap waters have no effect. The use of Cellex P is also studied.  相似文献   

6.
A highly efficient single-drop microextraction (SDME) procedure using a low-cost room temperature ionic liquid (RTIL), i.e., tetradecyl(trihexyl)phosphonium chloride (CYPHOS® IL 101), for Pb determination at trace levels in real water samples was developed. Lead was chelated with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) reagent and extracted into a 4 μL microdrop of CYPHOS® IL 101. The RTIL drop was directly injected into the graphite furnace of the electrothermal atomic absorption spectrometer (ETAAS). Under optimal microextraction conditions, a preconcentration factor of 32 was achieved with only 1.5 mL of sample resulting in a phase-volume ratio of 375. The limit of detection (LOD) obtained was 3.2 ng L−1 and the relative standard deviation (RSD) for 10 replicates at 0.5 μg L−1 Pb2+ concentration level was 4.9%, calculated at peak heights. The calibration graph was linear from concentration levels near the detection limits up to at least 4.5 μg L−1 with a correlation coefficient of 0.9996. The accuracy of the methodology was evaluated by analysis of a certified reference material (CRM). The method was successfully applied to the determination of Pb in tap, mineral, well and river water samples.  相似文献   

7.
A slurry sampling method has been developed for the determination of Pb in marine plankton by ETAAS using a freshwater plankton certified reference material (CRM 414). Slurries were prepared in 1–3% m/v range with 1% v/v HNO3 by ultrasonic agitation for 5 min. The effects of several chemical modifiers, including Ir(NO3)2, Mg(NO3)2, Pd(NO3)2, Pd(NO3)2 + Mg(NO3)2, and Mg(NO3)2 + NH4H2PO4, were investigated for the stabilization of Pb during thermal pretreatment. Lead in slurries was effectively stabilized up to 1000 °C with Ir, Pd and Pd + Mg modifiers among which Pd + Mg provided the best results with complete atomization at 1850 °C. Firings in the presence of Ir were, problematic due to ash formation inside the atomizer. Water, dilute HNO3 and HF were examined as suspension medium. Dilute HNO3 (1–2% v/v) proved to be advantageous over water as it afforded extraction of Pb from plankton almost quantitatively in 5 min agitation. Hydrofluoric acid was the least suitable medium. Increasing HF concentration up to 5% v/v resulted in inaccuracy and substantial background absorption. Fast-heating furnace method provided comparable accuracy and precision to that of conventional-heating in slurries of CRM 414. Detection limits and characteristic masses were, respectively, 0.49 μg L− 1 and 32 pg for the conventional method and 0.62 μg L− 1 and 37 pg for the fast-heating method. However, fast-heating approach suffered from distorted peaks at high temperatures and incomplete pyrolysis of matrix at lower temperatures. Analysis of marine plankton samples for Pb was performed by using the conventional furnace program. The results showed a high correlation with those obtained by solution ICP-MS. Differences were statistically insignificant within 95% confidence interval.  相似文献   

8.
In this article, a new ligandless dispersive liquid-liquid microextraction method has been developed for preconcentration of trace quantities of silver as a prior step to its determination by flame atomic absorption spectrometry. In the proposed approach, carbon tetrachloride and ethanol were used as extraction and dispersive solvents. Several factors that may be affected on the extraction process, like, extraction solvent, disperser solvent, the volume of extraction and disperser solvent, pH of the aqueous solution and extraction time were optimized. Under the optimal conditions, the calibration curve was linear in the range of 5.0 ng mL−1 to 2.0 μg mL−1 of silver with R2 = 0.9995 (n = 9) and detection limit based on three times the standard deviation of the blank (3Sb) was 1.2 ng mL−1 in original solution. The relative standard deviation for eight replicate determination of 0.5 μg mL−1 silver was ±1.5%. The high efficiency of dispersive liquid-liquid microextraction to carry out the determination of silver in complex matrices was demonstrated. The proposed method has been applied for determination of trace amount of silver in standard and water samples with satisfactory results.  相似文献   

9.
An efficient and sensitive method for the determination of methylmercury in biological samples was developed based on acid leaching extraction of methylmercury into toluene. Methylmercury in the organic phase was determined by electrothermal atomic absorption spectrometry (ETAAS). The methylmercury signal was enhanced and the reproducibility increased by formation of certain complexes and addition of Pd-DDC modifier. The complex of methylmercury with DDC produced the optimum analytical signal in terms of sensitivity and reproducibility compared to complexes with dithizone, cysteine, 1,10-phenanthroline, and diethyldithiocarbamate. Method performance was optimized by modifying parameters such as temperature of mineralization, atomization, and gas flow rate. The limit of detection for methylmercury determination was 0.015 μg g−1 and the RSD of the whole procedure was 12% for human teeth samples (n=5) and 15.8% for hair samples (n=5). The method’s accuracy was investigated by using NIES-13 and by spiking the samples with different amounts of methylmercury. The results were in good agreement with the certified values and the recoveries were 88–95%.  相似文献   

10.
A method using bi-directional electrostacking (BDES) in a flow system is presented for As preconcentration and speciation analysis. Some parameters such as electrostacking time and applied voltage, support buffers and their concentrations were investigated. Boric acid plus sodium hydroxide at 0.1 mol/l concentration was selected as support buffer to improve the pre-concentration factor (PF) for As(V). An analytical range from 2.0 to 50.0 μg l−1, and 0.35 μg l−1 as limit of detection, when applied 750 V for 20 min, were achieved. Under these conditions, a pre-concentration factor of 4.8 was obtained. The proposed method was applied to determine As(V) in mineral water and natural water samples (river, fountain and gold mine) from Ouro Preto city. Recoveries from 93.5 to 106.4% were achieved at 10 μg l−1 added As level (R.S.D.s between 3 and 7%). Potassium permanganate (10 mg l−1) was used for oxidising As species in order to determine total As, being established the concentration of As(III) from the difference between total As and As(V).  相似文献   

11.
A sensitive preconcentration methodology for Cd determination at trace levels in water samples was developed in this work. 1-Butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]) room temperature ionic liquid (RTIL) was successfully used for Cd preconcentration, as cadmium-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol complex [Cd-5-Br-PADAP]. Subsequently, Cd was back-extracted from the RTIL phase with 500 μL of 0.5 mol L−1 nitric acid and determined by electrothermal atomic absorption spectrometry (ETAAS). A preconcentration factor of 40 was achieved with 20 mL of sample. The limit of detection (LOD) obtained under optimum conditions was 3 ng L−1 and the relative standard deviation (R.S.D.) for 10 replicates at 1 μg L−1 Cd2+ concentration level was 3.5%, calculated at peak heights. The calibration graph was linear from concentration levels near the detection limits up to at least 5 μg L−1. A correlation coefficient of 0.9997 was achieved. Validation of the methodology was performed by standard addition method and analysis of certified reference material (CRM). The method was successfully applied to the determination of Cd in river and tap water samples.  相似文献   

12.
Karatepe A  Soylak M  Elçi L 《Talanta》2011,85(4):1974-1979
A selective preconcentration method was described for the determination of inorganic thallium species by electrothermal atomic absorption spectrometry (ETAAS). Thallium(III) and thallium(I) as chloro and iodo complexes were selectively retained by a column containing 0.5 g of Chromosorb 105 resin and quantitatively eluted by 10 mL of pure acetone. The calibration graph was linear with a correlation coefficient of 0.997 at levels near the detection limit and up to at least 0.8 μg L−1. The detection limits for the determination of total thallium and thallium(III) employing the proposed method by ETAAS were estimated as three values of the standard deviations, 0.050 μg L−1 and 0.034 μg L−1, respectively. Verification of the accuracy was carried out by the analysis of standard reference materials (GBW 07402 soil, NIST 2710 Montana soil, GBW 07309 and GBW 07310 stream sediments). The relative errors were found to be in the range of −7.7% to +4.8%. The relative standard deviations were generally found to be below 10%. The effect of potential interfering ions on the determination was studied. The proposed method was successfully applied to the determination of total thallium in five different brand cements, soils around two cement plants and metallic zinc samples. The speciation of thallium(I) and thallium(III) was applied to synthetic solutions.  相似文献   

13.
Tang AN  Ding GS  Yan XP 《Talanta》2005,67(5):942-946
Cloud point extraction was applied as a preconcentration step for electrothermal atomic absorption spectrometry (ETAAS) determination of As(III) in aqueous solutions. After complexation with ammonium pyrrolidinedithiocarbamate, the analyte was quantitatively extracted to the surfactant-rich phase in the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. 0.1 mol L−1 HNO3 in methanol was added to the surfactant-rich phase before ETAAS determination. The precision (R.S.D.) for 11 replicate determinations of 5.0 μg L−1 of As(III) was 3.0%. The concentration factor, which is defined as the concentration ratio of the analyte in the final diluted surfactant-rich extract ready for ETAAS determination and in the initial solution, was 36 for As(III). The linear concentration range was from 0.1 to 20 μg L−1. The developed method was applied to the determination of As(III) in lake water and river water.  相似文献   

14.
A non-chromatographic separation and preconcentration method for Se species determination based on the use of an on-line ionic liquid (IL) dispersive microextraction system coupled to electrothermal atomic absorption spectrometry (ETAAS) is proposed. Retention and separation of the IL phase was achieved with a Florisil®-packed microcolumn after dispersive liquid-liquid microextraction (DLLME) with tetradecyl(trihexyl)phosphonium chloride IL (CYPHOS® IL 101). Selenite [Se(IV)] species was selectively separated by forming Se-ammonium pyrrolidine dithiocarbamate (Se-APDC) complex followed by extraction with CYPHOS® IL 101. The methodology was highly selective towards Se(IV), while selenate [Se(VI)] was reduced and then indirectly determined. Several factors influencing the efficiency of the preconcentration technique, such as APDC concentration, sample volume, extractant phase volume, type of eluent, elution flow rate, etc., have been investigated in detail. The limit of detection (LOD) was 15 ng L−1 and the relative standard deviation (RSD) for 10 replicates at 0.5 μg L−1 Se concentration was 5.1%, calculated with peak heights. The calibration graph was linear and a correlation coefficient of 0.9993 was achieved. The method was successfully employed for Se speciation studies in garlic extracts and water samples.  相似文献   

15.
A method for thallium determination in some sulfide minerals (sphalerite, galena, orpiment and realgar) by electrothermal atomic absorption spectrometry has been proposed. Mineral samples were dissolved in a mixture of HNO3 and HCl. The effect of interfering elements (Zn, Pb and As) on the determination of Tl in the investigated minerals was studied. These investigations show that it is not possible to determine thallium directly from solutions obtained by dissolution of minerals in mineral acids, because these matrix elements tend to decrease the absorbance of thallium. Also, it was found that the investigated minerals contain iron that tends to increase the absorbance of thallium. Therefore, a method for extraction of thallium with isoamyl acetate from 10 mol/l HCl media was proposed. In these conditions, Zn, Pb and As remain in the inorganic phase, but iron and thallium are extracted into organic phase. Reextraction of iron from the organic layer was performed with 4 mol/l H2SO4. The determination of thallium was performed in the organic phase using Pd as modifier. The investigated sulfide minerals originated from different mines from the Republic of Macedonia. The relative standard-deviation range was between 2.20 to 3.92%. The detection limit of the method (calculated as 3SD of the blank) was found to be 0.05 microg/g.  相似文献   

16.
Molybdenum, Ir, Ru, Mo-Ir, Mo-Ru thermally coated on to platforms inserted in pyrolytic graphite tubes as permanent modifiers and Pd + Mg(NO3)2 conventional modifier mixture have been employed for the determination of cadmium and lead in dissolved sediments and soil samples by electrothermal atomic absorption spectrometry (ETAAS). Optimum masses and mass ratios of permanent modifiers for the analysis of Cd and Pb in sample solutions have been investigated. The 280 μg of Mo, 200 μg of Ir, 200 μg of Ru, 280 μg of Mo + 200 μg of Ir or 280 μg of Mo + 200 μg of Ru has been found as efficient as 5 μg of Pd + 3 μg of Mg(NO3)2 for increasing thermal stabilization of analytes and for decreasing the most serious interferences. Pyrolysis and atomization temperatures, atomization and background signal shapes, characteristic masses and detection limits of analytes in dissolved samples with or without permanent and conventional modifiers have been compared. The detection limits and characteristic masses obtained with Mo-Ir coated platform are 0.01 μg g−1 and 1.1 pg for Cd and 0.09 μg g−1 and 19 pg for Pb, respectively. Long-term stabilities for analytes in samples with Mo, Mo-Ir, Mo-Ru and Pd + Mg(NO3)2 have been studied. Cadmium and lead contents have been determined in certified and standard reference materials by using optimum conditions investigated and the results obtained with Mo-Ir or Mo-Ru were in agreement with the values of certified reference materials.  相似文献   

17.
Flow-injection graphite furnace atomic absorption spectrometric (GFAAS) methods were worked out using oxime, sulphoxine and 2,2′-diamino-diethylamine (DEN) cellulose microcolumns for preconcentration of platinum after reduction by iodide or sulphite ions. The detection limits were, at 20-fold enrichment, 0.21, 0.18 and 0.30 μg l−1, respectively. The total reflection X-ray fluorescence spectrometry (TXRF) was also used for the determination of platinum in eluates. The method was applied for the determination of platinum in salmeterol xinafoate and Ca-folinate pharmaceutical compounds. Decomposition of organic matrix of Ca-folinate was necessary before the preconcentration.  相似文献   

18.
The study introduces a new simple and highly sensitive method for headspace solid phase microextraction (HS-SPME) coupled with electrothermal atomic absorption spectrometric determination of mercury. In the proposed method, a gold wire, mounted in the headspace of a sample solution in a sealed bottle, is used for collection of mercury vapor generated by addition of sodium tetrahydroborate. The gold wire is then simply inserted in the sample introduction hole of a graphite furnace of an electrothermal atomic absorption spectrometry instrument. By applying an atomization temperature of 600 °C, mercury is rapidly desorbed from the wire and determined with high sensitivity.  相似文献   

19.
The need for highly reliable methods for the determination of trace and ultratrace elements has been recognized in analytical chemistry and environmental science. A simple and powerful microextraction technique was used for the detection of the lead ultratrace amounts in water samples using the dispersive liquid-liquid microextraction (DLLME), followed by the electrothermal atomic absorption spectrometry (ET AAS). In this microextraction technique, a mixture of 0.50 mL acetone (disperser solvent), containing 35 microL carbon tetrachloride (extraction solvent) and 5 microL diethyldithiophosphoric acid (chelating agent), was rapidly injected by syringe into the 5.00 mL water sample, spiked with lead. In this process, the lead ions reacted with the chelating agent and were extracted into the fine droplets of CCl(4). After centrifugation (2 min at 5000 rpm), the fine CCl4 droplets were sedimented at the bottom of the conical test tube (25+/-1 microL). Then, 20 microL from the sedimented phase, containing the enriched analyte, was determined by ET AAS. The next step was the optimization of various experimental conditions, affecting DLLME, such as the type and the volume of the extraction solvent, the type and the volume of the disperser solvent, the extraction time, the salt effect, pH and the chelating agent amount. Moreover, the effect of the interfering ions on the analytes recovery was also investigated. Under the optimum conditions, the enrichment factor of 150 was obtained from only a 5.00 mL water sample. The calibration graph was linear in the range of 0.05-1 microg L(-1) with the detection limit of 0.02 microg L(-1). The relative standard deviation (R.S.D.) for seven replicate measurements of 0.50 microg L(-1) of lead was 2.5%. The relative lead recoveries in mineral, tap, well and sea water samples at the spiking level of 0.20 and 0.40 microg L(-1) varied from 93.5 to 105.0. The characteristics of the proposed method were compared with the cloud point extraction (CPE), the liquid-liquid extraction, the solid phase extraction (SPE), the on-line solid phase extraction (SPE) and the co-precipitation, based on bibliographic data. The main DLLME advantages combined with ET AAS were simplicity of operation, rapidity, low cost, high-enrichment factor, good repeatability, low consumption of extraction solvent, requiring a low sample volume (5.00 mL).  相似文献   

20.
A flow injection on-line sorption preconcentration electrothermal atomic absorption spectrometric system for fully automatic determination of lead in water was investigated. The discrete non-flow-through nature of ETAAS, the limited capacity of the graphite tube and the relatively large volume of the knotted reactor (KR) are obstacles to overcome for the on-line coupling of the KR sorption preconcentration system with ETAAS. A new FI manifold has been developed with the aim of reducing the eluate volume and minimizing dispersion. The lead diethyldithiocarbamate complex was adsorbed on the inner walls of a knotted reactor made of PTFE tubing (100 cm long, 0.5 mm i.d.). After that, an air flow was introduced to remove the residual solution from the KR and the eluate delivery tube, then the adsorbed analyte chelate was quantitatively eluted into a delivery tube with 50 μl of ethanol. An air flow was used to propel the eluent from the eluent loop through the reactor and to introduce all the ethanolic eluate onto the platform of the transversely heated graphite tube atomizer, which was preheated to 80°C. With the use of the new FI manifold, the consumption of eluent was greatly reduced and dispersion was minimized. The adsorption efficiency was 58%, and the enhancement factor was 142 in the concentration range 0.01–0.05 μg l−1 Pb at a sample loading rate of 6.8 ml min−1 with 60 s preconcentration time. For the range 0.1–2.0 μg l−1 of Pb a loading rate of 3.0 ml min−1 and 30 s preconcentration time were chosen, resulting in an adsorption efficiency of 42% and an enhancement factor of 21, respectively. A detection limit (3σ) of 2.2 ng l−1 of lead was obtained using a sample loading rate of 6.8 ml min−1 and 60 s preconcentration. The relative standard deviation of the entire procedure was 4.9% at the 0.01 μg l−1 Pb level with a loading rate of 6.8 ml min−1 and 60 s preconcentration, and 2.9% at the 0.5 μg l−1 Pb level with a 3.0 ml min−1 loading rate and 30 s preconcentration. Efficient washing of the matrix from the reactor was critical, requiring the use of the standard addition method for seawater samples. The analytical results obtained for seawater and river water standard reference materials were in good agreement with the certified values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号