首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A new method is described for the determination of lead based on the cathodic adsorptive stripping of the lead–nuclear fast red (NFR) at a carbon paste electrode (CPE). The differential pulse voltammograms of the adsorbed complex of lead–NFR are recorded from ?0.10 to ?0.60 V (versus Ag/AgCl electrode). Optimal conditions were found to be an electrode containing 25% paraffin oil and 75% high purity graphite powder, 4.0×10?5 mol L?1 NFR; buffer solution (pH of 3.0), accumulation potential and time, ?0.20 V, 60 and 120 s (for high and low concentration of lead), respectively. The results show that the complex can be adsorbed on the surface of the CPE, yielding one peak at ?0.34 V, corresponding to reduction of NFR in the complex at the electrode. The detection limit was found to be 0.2 ng mL?1 with a 120s accumulation time. The linear ranges are from 0.5 to 50 (tacc=120 s) and 50 to 200 ng mL?1 (tacc=60 s). Application of the procedure to the determination of lead in lake water, bottled mineral water, synthetic samples and sweet fruit‐flavored powder drinks samples gave good results.  相似文献   

2.
《Analytical letters》2012,45(10):1407-1417
Abstract

Square-wave voltammetry is a fast technique used for determination of trace amounts of acrylamide. When cobalt(II) ions were added to the acrylamide solution, a catalytic peak at about ?1.35 V vs. Ag/AgCl was observed, which was proportional to acrylamide concentration. The calibration curve showed good linearity in the range of 200–800 ng mL?1 of acrylamide with a regression coefficient of 0.9989. The limit of detection of the method was 3.52 ng mL?1, and the relative standard deviations for concentrations of 300 ng mL?1 and 700 ng mL?1 were 99.8% × 10?2 and 79.7% × 10?2, respectively.  相似文献   

3.
An adsorptive differential pulse stripping method for the simultaneous determination of lead and tin is proposed. The procedure involves an adsorptive accumulation of lead and tin on a hanging mercury drop electrode (HMDE), followed by oxidation of adsorbed lead and tin by voltammetric scan using differential pulse modulation. The optimum experimental conditions are: 0.2 mol L?1 HNO3, accumulation potential of ?900 mV versus Ag/AgCl, accumulation time of 200 s, scan rate of 20 mV s?1 and pulse height of 80 mV. Lead and tin peak currents were observed in the same potential region at about ?400 mV. The simultaneous determination of lead and tin by using voltammetry is a difficult problem in analytical chemistry, due to voltammogram interferences. The resolution of a mixture of lead and tin by the application of orthogonal signal correction‐partial least squares (OSC‐PLS) was performed. The linear dynamic ranges were 0.003‐0.35 and 0.008‐0.50 μg mL?1 and detection limits were land 3 ng mL?1 for lead and tin, respectively. The RMSEP for lead and tin with OSC and without OSC were 2.8737, 6.0557 and 8.0941, 9.5151, respectively. The capability of the method for the analysis of real samples was evaluated by the determination of lead and tin in water samples with satisfactory results.  相似文献   

4.
《Electroanalysis》2005,17(20):1841-1846
This paper describes a very sensitive catalytic adsorptive stripping voltammetry (CAdSV) procedure for the simultaneous determination of traces of platinum and rhodium in new supporting electrolyte containing hydroxylamine or acetone oxime and formaldehyde in sulfuric acid medium. Platinum and rhodium were pre‐accumulated simultaneously and after 120 s of accumulation time at 0.0 V, the achieved detection limits were equal 0.1 ng L?1 and 0.2 ng L?1 for platinum and rhodium respectively in the presence of acetone oxime and 0.6 ng L?1 and 0.2 ng L?1 for platinum and rhodium respectively in the presence of hydroxylamine. Described reagents were successfully applied to the determination of platinum and rhodium in plant material. Inductively coupled plasma mass spectrometry (ICP MS) was used as a reference method to the CAdSV measurements.  相似文献   

5.
An electroanalytical method for the determination of morpholine, a corrosion inhibitor, was developed at a cathodically pretreated boron-doped diamond electrode (BDDE). The voltammetric response of morpholine at the BDDE in 0.1?mol L?1 KCl (pH 10) shows an irreversible oxidation process at approximately 1.3?V vs. Ag/AgCl in 3.0?mol L?1 KCl. Using cyclic voltammetry, the number of electrons involved in the morpholine electroxidation mechanism was found to be 1. The application of chronoamperometry showed that the apparent diffusion coefficient (D0) was 2.99?×?10?6 cm2 s?1. Using square wave voltammetry under the optimized conditions (frequency of 30.0?Hz, pulse amplitude of 100?mV and step potential of 20?mV at pH 10.0), the developed method provided limits of detection and quantification of 2.1 and 6.9?mg L?1, respectively, with a linear range from 5.0 to 100.0?mg L?1 (r?=?0.991). Intraday (n?=?10) and interday (two consecutive day) precision values assessed as the relative standard deviation for solutions containing 30.0, 60.0, and 90.0?mg L?1 of morpholine were from 0.41 to 5.86% and 0.92 to 3.19%, respectively. The feasibility of the method for the interference-free determination of morpholine was verified by the analysis of synthetic boiler water samples containing CaCO3, Na2SO3, Na3PO4, FeCl3, and humic acid as organic matter. In addition, hydrazine was added as a possible interfering compound because of its widespread use in corrosion inhibition. Recovery values from 90.9 to 109.4% were obtained in the synthetic boiler water, thereby attesting to the accuracy of the method.  相似文献   

6.
An electrochemical adsorptive stripping approach is presented for the trace measurement of copper in some real samples. The method is based on the reduction of Cu2+ at pH 5.5 calcein blue (CB) containing solution at ?250 mV (vs. Ag/AgCl), adsorption of Cu? CB complex on hanging mercury drop electrode (HMDE) and the voltammetric determination by further reduction to Cu+ at HMDE. Experimental optimum conditions were determined in the fundamental studies. At the experimental optimum conditions the adsorbed complex of Cu2+ and calcein blue gives a well defined cathodic stripping peak current at ?0.135 V, which has been used for the determination of copper in the concentration range of 0.02 to 15 ng/mL with accumulation time of 90 s. The relative standard deviation (RSD) for the determination of 0.5 and 6.0 ng mL?1 were 2.60 and 1.94% respectively. (n=10). The method has been applied to the analysis of copper in analytical reagent grade salts and tap water, mineral water and drug samples with satisfactory results.  相似文献   

7.
A multi-walled carbon nanotubes (MWNTs) modified glassy carbon electrode (MWNT-GCE) was used to study the electrochemical behaviour of1-hydroxypyrene (1-OHP) and applied to its determination. The results showed that the modified electrode had a strong adsorptive ability to 1-OHP and enhances its electrochemical signal. By square wave voltammetry, the linear relationship of 1-OHP was 6?×?10?9???8?×?10?7?mol?L?1 with a linear correlation coefficient of 0.996, and the detection limit was 1?×?10?10?mol?L?1. Compared with other published methods, this newly proposed method possesses many advantages such as very low detection limit, fast response, low cost and simplicity. And this method was applied successfully in the determination of 1‐OHP in real human urine samples.  相似文献   

8.
《Analytical letters》2012,45(16):2439-2453
Abstract

A sensitive electrochemical biosensor was designed for determination of aflatoxin B1 (AFB1) using a copper-based metal-organic framework (Cu-MOF), which has strong electrochemical activity and exonuclease III (Exo III)-assisted recycling for dual signal amplification. Hairpin DNA (S1) was immobilized on the electrode. The AFB1 was recognized by aptamer DNA (S2) and complementary DNA (S3) was released. The S3 hybridized with the hairpin S1 to form the Exo III hydrolyzed double-stranded DNA, leaving a partial sequence of hairpin DNA (S1′) on the electrode and releasing S3 for the next cycle of the opening and digestion of hairpin S1. The amplified S1′ then was able to combine with more signal probes. Cu-MOF bond gold nanoparticles (AuNPs) by -NH2 were immobilized to capture DNA (S4) to obtain Cu-MOF/AuNPs/S4. This signal probe Cu-MOF/AuNPs/S4 was able to hybridize with the electrode and generate an amplified electrochemical signal. Under the optimized conditions, this electrochemical biosensor for AFB1 exhibited a low detection limit of 6.7?×?10?7?ng/mL at a signal-to-noise equal to 3 and a wide linear range from 10?6 to 1?ng/mL. The biosensor was also used to analyze AFB1-spiked beer sample with recovery values between 96% and 103%. This method has the potential to become a valuable technology for detecting various toxins by the selection of the appropriate aptamer DNA.  相似文献   

9.
Simple cyclic renewable silver amalgam film electrode (Hg(Ag)FE), applied for the determination of gallium(III) using differential pulse anodic stripping voltammetry (DP ASV), is presented. The effects of various factors such as: preconcentration potential and time, pulse height, step potential and supporting electrolyte composition are optimised. The calibration graph is linear from 5?nM (0.35?µg?L?1) to 80?nM (5.6?µg?L?1) for a preconcentration time of 60?s, with correlation coefficient of 0.995. For a Hg(Ag)FE with a surface area of 9.9?mm2 the detection limit for a preconcentration time of 120?s is as low as 0.1?µg?L?1. The repeatability of the method at a concentration level of the analyte as low as 3.5?µg?L?1, expressed as RSD is 3.2% (n?=?5). The proposed method was successfully applied by studying the synthetic samples and simultaneously recovery of Ga(III) from spiked aluminium samples.  相似文献   

10.
《Analytical letters》2012,45(7):1128-1143
Abstract

The spectrophotometric behavior of uranium (VI) with L-3-(3, 4-dihydroxy phenyl) alanine (LDOPA) reagent revealed that the uranium can form a ML2 complex with LDOPA in solution. Thus a highly sensitive adsorptive stripping voltammetric protocol for measuring of trace uranium, in which the preconcentration was achieved by adsorption of the uranium-LDOPA complex at hanging mercury drop electrode (HMDE), is described. Optimal conditions were found to be a 0.02 M ammonium buffer (pH 9.5) containing 2.0 × 10?5 M (LDOPA), an accumulation potential of ? 0.1 V (versus Ag/AgCl) and an accumulation time of 120 sec.

The peak current and concentration of uranium accorded with linear relationship in the range of 0.5–300 ng ml?1. The relative standard deviation (at 10 ng ml?1) is 3.6% and the detection limit is 0.27 ng ml?1. The interference of some common ions was studied. Applicability to different real samples is illustrated. The attractive behavior of this reagent holds great promise for routine environmental and industrial monitoring of uranium.  相似文献   

11.
A simple, low-cost and sensitive electroanalytical method was developed for the simultaneous determination of p-nitrophenol and o-nitrophenol isomers in water samples at a glassy carbon electrode (CGE) in the presence of cationic surfactant. The electrochemical behavior of p-nitrophenol and o-nitrophenol was studied by cyclic voltammetry (CV) in 0.1?mol L?1 acetate/acetic acid buffer (pH 3.70) in the presence and absence of cetylpyridinium bromide. The resolution of overlapped cathodic peaks potentials (Epc) of isomers was successfully improved in the presence of 100.0?µmol L?1 cetylpyridinium bromide, thus making this approach ideal for the simultaneous determination of isomers. Under the optimized conditions in 0.05?mol L?1 HEPES buffer at pH 7.0 using differential pulse voltammetry (DPV) at a scan rate of 45?mV s?1, pulse amplitude of 220?mV and modulation time of 10?ms, limits of detection 0.59?µmol L?1 for p-nitrophenol and 1.14?µmol L?1 for o-nitrophenol were obtained with linear ranges from 2.0 to 60.0?µmol L?1 and 3.0 to 60.0?µmol L?1, respectively. The intraday precision was assessed as relative standard deviation (%) for 20.0 and 40.0?µmol L?1 concentrations were 4.30% and 2.41% for p-nitrophenol and 4.87% and 2.20% for o-nitrophenol, respectively. The developed method was applied for the determination of the isomers in lake water samples. The accuracy was attested by comparison with high-performance liquid chromatography with diode array detection (HPLC-DAD) as a reference analytical technique. Recovery values ranging from 90.3% to 111.8% also attested to the accuracy of method for analysis of real samples.  相似文献   

12.
A novel, sensitive and selective adsorptive stripping procedure for simultaneous determination of iron, copper and cadmium is presented. The method is based on the adsorptive accumulation of thymolphthalexone (TPN) complexes of these elements onto a hanging mercury drop electrode, followed by reduction of adsorbed species by voltammetric scan using differential pulse modulation. The influences of control variables on the sensitivity of the proposed method for the simultaneous determination of iron, copper and cadmium were studied using the Derringer desirability function. The optimum analytical conditions were found to be TPN concentration of 2.0 μM, pH of 9.5, and accumulation potential at ?0.4 V vs. Ag/AgCl with an accumulation time of 60 s. The peak currents are proportional to the concentration of iron, copper and cadmium over the 1–80, 0.5–100 and 1–100 ng mL?1 ranges with detection limits of 0.5, 0.4 and 0.9 ng mL?1, respectively. The R.S.D. at a concentration level of 20 ng mL?1 of iron, copper and cadmium were 2.5%, 0.9% and 1.5% (n=6), respectively. The procedure was applied to the simultaneous determination of iron, copper and cadmium in the tap water and some synthetic samples with satisfactory results.  相似文献   

13.
Nonylphenol (NP), octylphenol (OP), nonylphenol monoethoxylate (NP1EO) and nonylphenol diethoxylate (NP2EO) are products of the biodegradation of alkylphenol polyethoxylates (AP n EO) which are used worldwide as detergents and surfactants. NP and OP are categorized as definitely endocrine disruptors. 2,4-Tert-butylphenol (BP) is extensively used for anti-oxidant of rubber and plastics. This work proposed a simple and stable method for simultaneously determining the concentration of NP, OP, BP, n-NP1EO and n-NP2EO in meat and fish, without requiring the complex pretreatments of current methods. This study used liquid extraction with acetonitrile and hexane and solid extraction using Florisil, in that order to pretreat samples. The sample solutions were analyzed to identify NP, OP, BP, n-NP1EO and n-NP2EO by HPLC with fluorescence detection. The mean recoveries were 85.3?±?3.32% for OP, 87.5?±?6.01% for BP, 90.9?±?4.72% for NP, 86.4?±?4.81% for n-NP2EO and 90.9?±?4.84% for n-NP1EO. The average coefficients of variation were about 6%. The method's detection limits were 5.4?ng?g?1 for OP, 5.2?ng?g?1 for BP, 8.9?ng?g?1 for NP, 8.7?ng?g?1 for n-NP2EO and 8.1?ng?g?1 for n-NP1EO. This work analyzed 5 kinds of usual foodstuffs of meat and fish that are frequently consumed by residents of Taiwan. All of these samples contained NP, but not detectable levels n-NP1EO. Only salmon was contaminated with n-NP2EO. The NP level was highest in cod (198.41?±?129.34?ng?g?1, wet weight). The fried chicken had the highest BP level (48.0?±?41.3?ng?g?1, wet weight), and the uncooked chicken had the highest OP level (66.6?±?53.0?ng?g?1, wet weight).  相似文献   

14.
Cyclic voltammetric studies of isoproturon and carbendazim using polypyrrole modified glassy carbon electrode were carried out. The electrode and reaction conditions, which yielded maximum current signal, were selected for the development of stripping voltammetric procedure for the determination of the pesticides. The oxidation peak around 1.3?V obtained for isoproturon and carbendazim while employing polypyrrole modified electrode showed maximum current response. This peak was chosen for stripping analysis using square wave mode. The experimental parameters were optimized and the calibration plot was obtained. The LOD was 0.5?ng?mL?1 for isoproturon and 5?ng?mL?1 for carbendazim. The relative standard deviation for 5 identical measurements was 2.81% and 3.33% for isoproturon and carbendazim respectively. The applicability of the method was verified by determining the pesticides in spiked soil and water samples.  相似文献   

15.
A single robust reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated as per International Conference on Harmonization guidelines for the accurate quantification of curcuminoids in commercial turmeric products, Ayurvedic medicines, and nanovesicular systems. The proposed chromatographic method was found to be specific, linear (r2?≥?0.999), precise at intra- and inter-day levels (percentage relative standard deviation <2.0%), accurate (percentage recovery 99.14–102.29%), and robust. The limits of detection and quantification were found to be 7.40 and 24.70?ng?mL?1 for curcumin, 9.24 and 30.80?ng?mL?1 for demethoxycurcumin, and 6.48 and 21.61?ng?mL?1 for bisdemethoxycurcumin, respectively. Among different commercial turmeric products and Ayurvedic medicines tested, the contents of curcumin (3.54?±?0.06–25.8?±?0.08?mg?g?1), demethoxycurcumin (1.28?±?0.02–9.97?±?0.03?mg?g?1), and bisdemethoxycurcumin (0.50?±?0.01–5.97?±?0.01?mg?g?1) varied significantly. The developed method was effectively applied to the determination of encapsulation efficiency of curcuminoids (ranged between 84.33?±?3.50 and 96.59?±?2.53%) in the nanovesicular systems. In conclusion, the reported method is suitable for the analysis of curcuminoids in a wide variety of turmeric products and used for the quality control of products that contain curcuminoids.  相似文献   

16.
A sensitive and robust method using solid-phase extraction and ultrasonic extraction for preconcentration followed by ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS–MS) has been developed for determination of 19 biocides: eight azole fungicides (climbazole, clotrimazole, ketoconazole, miconazole, fluconazole, itraconazole, thiabendazole, and carbendazim), two insect repellents (N,N-diethyl-3-methylbenzamide (DEET), and icaridin (also known as picaridin)), three isothiazolinone antifouling agents (1,2-benzisothiazolinone (BIT), 2-n-octyl-4-isothiazolinone (OIT), and 4,5-dichloro-2-n-octyl-isothiazolinone (DCOIT)), four paraben preservatives (methylparaben, ethylparaben, propylparaben, and butylparaben), and two disinfectants (triclosan and triclocarban) in surface water, wastewater, sediment, sludge, and soil. Recovery of the target compounds from surface water, influent, effluent, sediment, sludge, and soil was mostly in the range 70–120?%, with corresponding method quantification limits ranging from 0.01 to 0.31?ng?L?1, 0.07 to 7.48?ng?L?1, 0.01 to 3.90?ng?L?1, 0.01 to 0.45?ng?g?1, 0.01 to 6.37?ng?g?1, and 0.01 to 0.73?ng?g?1, respectively. Carbendazim, climbazole, clotrimazole, methylparaben, miconazole, triclocarban, and triclosan were detected at low ng?L?1 (or ng?g?1) levels in surface water, sediment, and sludge-amended soil. Fifteen target compounds were found in influent samples, at concentrations ranging between 0.4 (thiabendazole) and 372?ng?L?1 (methylparaben). Fifteen target compounds were found in effluent samples, at concentrations ranging between 0.4 (thiabendazole) and 114?ng?L?1 (carbendazim). Ten target compounds were found in dewatered sludge samples, at concentrations ranging between 1.1 (DEET) and 887?ng?g?1 (triclocarban).  相似文献   

17.
This research introduces the design of an adsorptive stripping voltammetric method for the cerium(III) determination at a carbon paste electrode, chemically modified with dipyridyl‐functionalized nanoporous silica gel (DPNSG‐CPE). The electroanalytical procedure comprised two steps: the Ce(III) chemical accumulation at ?200 mV followed by the electrochemical detection of the Ce(III)/dipyridyl complex, using anodic stripping voltammetry. The factors, influencing the adsorptive stripping performance, were optimized including the modifier quantity in the paste, the electrolyte concentrations, the solution pH and the accumulation potential or time. The resulting electrode demonstrated a linear response over a wide range of Ce(III) concentration (1.0–28 ng mL?1). The precision for seven determinations of 4 and 10 ng mL?1 Ce(III) was 3.2% and 2.5% (relative standard deviation), respectively. The prepared electrode was used for the cerium determination in real samples and very good recovery results were obtained.  相似文献   

18.
《Analytical letters》2012,45(15):2430-2443
Abstract

A highly sensitive method to determine of indium is proposed by adsorption stripping differential pulse cathodic voltammetry (AdSDPCV) method. The complex of indium ions with xylenol orange is analyzed based on the adsorption collection onto a hanging mercury drop electrode (HMDE). After accumulation of the complex at ?0.20 V vs. Ag/AgCl reference electrode, the potential is scanned in a negative direction from ?0.40 to ?0.75 V with the differential pulse method. Then, the reduction peak current of In(III)–XO complex is measured. The influence of chemical and instrumental variables was studied by factorial design analysis. Under optimum conditions and accumulation time of 60 s, linear dynamic range was 0.1–10 ng/ml (8.7 × 10?10 to 8.7 × 10?8 M) with a limit of detection of 0.03 ng/ml (2.6 × 10?10 M); at accumulation time of 5 min, linear dynamic range was 0.04–10 ng/ml (3.4 × 10?10 to 8.7 × 10?8 M) with a limit of detection of 0.013 ng/ml (1.1 × 10?10 M). The applicability of the method to analysis of real samples was assessed by the determination of indium in water, alloy, and jarosite (zinc ore) samples.  相似文献   

19.
Ultrasound-assisted dispersive liquid?Cliquid microextraction (USA-DLLME) with low solvent consumption was demonstrated for gas chromatography-mass spectrometry (GC?CMS) determination of 16 typical polycyclic aromatic hydrocarbons (PAHs) in seawater samples. Factors affecting the extraction process, such as extraction and dispersive solvent, phase ratio, temperature, extraction and centrifugation time, were investigated thoroughly and optimized. The linear range was 20?C2,000 ng L?1 except for acenaphthylene (Acy) at 10?C2,000 ng L?1 and phenanthrene (Phe), fluoranthene (Flu) and pyrene (Py) all at 5?C2,000 ng L?1. Enrichment factors (EFs) ranging from 722 to 8,133 were obtained, achieving limits of detection at 1.0?C10.0 ng L?1. The method attained good precision (relative standard deviation, RSD) from 3.4 to 14.2% for spiked 50 ng L?1 individual PAHs standards. Method recoveries were in the range 87?C124% and 70?C127% for spiked samples from simulated seawater and beach seawater, respectively. The proposed USA-DLLME helped to obtain about 1.1?C10 times higher EFs in a minimum amount of solvent and in less time than traditional DLLME.  相似文献   

20.
A simple on-line method for simultaneous determination of some oestrogens including oestriol (E3), norethisterone (NORE), ethynylestradiol (EE2), D-norgestrel (NORG) and bisphenol A (BPA), in environmental liquid samples was developed by coupling in-tube solid phase microextraction (in-tube SPME) to high-performance liquid chromatography with diode array (DAD) and fluorescence (FLD) detectors. Two capillary chromatographic columns (Supel-Q? and Carboxen? 1006 porous layer open tubular) were selected to develop this method. To achieve optimum extraction performance, several parameters were investigated including number of draw/eject cycles and the sample volume for each of the columns. Reproducibility was satisfactory for inter- and intra-day precision, yielding % RSDs of less than 10% and 7.6%, respectively. Limits of detection (LODs) and quantification (LOQs) for the proposed method using a DAD detector were achieved in the ranges of 0.04–0.63?ng?mL?1 and 0.12–1.9?ng?mL?1, depending of the capillary column used. Fluorescence detection improved these parameters for E3, BPA and EE2, obtaining LODs of 0.005–0.03?ng?mL?1 and LOQs of 0.015–0.08?ng?mL?1 using Supel-Q and LODs of 0.01–0.015?ng?mL?1 and LOQs of 0.025–0.04?ng?mL?1 using Carboxen. The proposed method was successfully applied to spiked environmental waters obtaining recoveries greater than 80%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号