首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new PVC-membrane electrode for Co2+ ions based on N,N′-di(thiazol-2-yl)formimidamide (TF) as membrane carrier has been developed. The electrode resulted in Nernstian response (29.5?±?0.4?mV decade?1) for Co2+ ion over a wide concentration range (2.5?×?10?7 ?1.0?×?10?1?M) with a detection limit of 6.1?×?10?8?M. The sensor has a response time of about 10?s, and can be used for at least 2 months without observing any deviation from the Nernstain response. The electrode revealed good selectivity towards cobalt(II) ion over a wide variety of alkali, alkaline earth, transition, and heavy metal ions and could be used in the pH range 2.0–7.0. The electrode was used for determination of Co2+ in real samples.  相似文献   

2.
A new tin complex namely tetracyclohexyl tin(IV) (TCHT) was synthesized and used as the ion carrier for the construction of a highly selective salicylate sensor. This sensor shows a Nernstian response to salicylate ions over a very wide concentration (1.0 × 10?7–1.0 × 10?1 M) in a pH range of 5.5–10.5. The optimum selectivity and response could be obtained for a membrane incorporating 30% PVC, 61% BA, 3% of cationic additive (HTAB) and 6% of TCHT. The response time of the electrode is very short in the whole concentration range (15 s). The electrode also shows an excellent discriminating ability for salicylate ions with respect to the most common organic and inorganic anions including chloride, sulfate, nitrate, nitrite, cyanide, sulfite, iodide, thiocyanate, phosphate, acetate, oxalate, citrate, and tartarate ions. The detection limit of the proposed sensor is 8.0 × 10?8 M. The electrode was successfully used for determining the concentration of salicylate ion in synthetic serums.  相似文献   

3.
《Electroanalysis》2004,16(16):1336-1342
The construction, performance characteristics, and application of polymeric membrane (PME) and coated graphite (CGE) thiocyanate‐selective electrodes are reported. The electrodes were prepared by incorporating the complex [Cu(L)](NO3)2 (L=4,7‐bis(3‐aminopropyl)‐1‐thia‐4,7‐diazacyclononane) into a plasiticized poly(vinyl chloride) membrane. The influence of membrane composition, pH of test solution, and foreign ions were investigated. The electrodes reveal Nernstian behavior over a wide SCN? ion concentration range (1.0×10?6–1.0×10?1 M for PME and 5.0×10?7–1.0×10?2 M for CGE) and show fast dynamic response times of 15 s and lower. The proposed sensors show high selectivity towards thiocyanate over several common organic and inorganic anions. They were successfully applied to the direct determination of thiocyanate in urine and saliva of smokers and nonsmokers, and as an indicator electrode in titration of Ag+ ions with thiocyanate.  相似文献   

4.
《Analytical letters》2012,45(4):683-695
Abstract

A highly selective and sensitive triiodide sensor based on a 2‐(((2‐(((E)‐1‐(2‐hydroxy phenyl) methylidine) amino) phenyl) imino) methyl) phenol with iodine (CTC) as membrane carrier was developed. The electrode revealed a Nernstian behavior over a very wide triiodide‐ion concentration range (5.0×10?8–1.0×10?2 M), and relatively low detection limit (3.0×10?8 M). The potentiometric response is independent of the pH of solution in the pH range of 3.0–10.0. The electrodes manifest advantages of low resistance, very fast response (<12 s), and most importantly, good selectivities relative to a wide variety of inorganic and organic anions, including iodide, bromide, chloride, fluoride, sulfite, sulfate, cyanide, thiocyanate, and acetate. In fact, the selectivity behavior of the proposed triiodide ion‐selective electrode shows great improvements compared to the previously reported electrodes for the triiodide ion. The proposed membrane sensor can be used for at least 6 months without any significant divergences in the potential. The electrode was successfully applied as an indicator electrode in the titration of triiodide with thiosulfate ion.  相似文献   

5.
This study demonstrates the application of the composite of multi-walled carbon nanotube polyvinylchloride (MWCNT-PVC) based on Bismarck Brown R for gallium sensor. MWCNT has a role to enhance the hydrophobicity of the membrane, which leads to a more stable potential signal. In addition by applying polypyrrol on the surface of this sensor a reduction in the drift of potential occurred and equilibrium potential was achieved faster. Compared to previous studies, using a stainless steel disc instead of a wire electrode causes to obtain an easily and more homogeneous coated electrode. The sensor shows a good Nernstian slope of 19.70?±?0.37?mV?decade?1 in a wide linear range concentration of 1.0?×?10?7 to 1.0?×?10?2?M of Ga(NO3)3. The detection limit of this electrode was 7.7?×?10?8?M of Ga(NO3)3. This proposed sensor is applicable in a wide pH range of 2 to 8. It has a short response time of about 8?s and has a good selectivity over twenty four various metal ions. The practical analytical utility of this electrode is demonstrated by measurement of Ga(III) in rock and different water samples.  相似文献   

6.
《Electroanalysis》2004,16(12):1002-1008
Preliminary theoretical studies revealed the selective complexation of bis (2‐mercaptoanil) diacetyl (BMDA) with La3+ over several alkali, alkaline earth and heavy metal ions. Thus, novel PVC‐based membrane (PBM) and coated graphite membrane (CGM) sensors for La(III) based on BMDA were prepared. The electrodes display Nernstian behavior over wide concentration ranges (i.e., 1.0×10?5–1.0×10?1 M for PBM and 1.0×10?6–1.0×10?1 M for CGM). The potential response of sensors was pH independent in the range of 4.0–8.0. The sensors possess satisfactory reproducibility, fast response time (<15 s), and specially excellent discriminating ability for La3+ ions with respect to most of the cations. The membrane sensor was used as an indicator electrode in potentiometric titration of lanthanum ions with EDTA. The coated graphite membrane electrode was applied in determination of fluoride ions in mouth wash preparations.  相似文献   

7.
《Electroanalysis》2005,17(20):1865-1869
A novel anion‐selective PVC membrane electrode based on bis‐[(3‐ferrocenyl)‐(2‐crotonic acid)] copper(II) complex [Cu(II)‐BFCA] as neutral carrier is described, which demonstrates excellent potentiometric response characteristics toward thiocyanate ion and anti‐Hofmeister selectivity sequence in following order: SCN?>I?>ClO >Sal?>Br?>NO >Cl?≈NO >SO >SO . The electrode shows a near‐Nernstian response for thiocyanate ion in a wide range of 9.0×10?7–1.0×10?1 M with a detection limit 6.8×10?7 M and a slope of ?59.1 mV/decade in pH 5.0 of phosphate buffer solution at 20 °C. The influences of lipophilic cationic and anionic additives on the response properties of the electrode were investigated. High sensitivity and wide linear dynamic range were observed for the electrode in the presence of hexadecyltrimethylammoniumborate (HTAB) as a lipophilic cationic additive. The electrode was successfully applied to the determination of thiocyanate ion in waste water and human saliva.  相似文献   

8.
《Electroanalysis》2003,15(19):1561-1565
A highly selective membrane electrode for the determination of ultratrace amounts of lead was prepared. The PVC membrane electrode based on 2‐(2‐ethanoloxymethyl)‐1‐hydroxy‐9,10‐anthraquinone (AQ), directly coated on graphite, exhibits a good Nernstian response for Pb(II) ions over a very wide concentration range (1.0×10?7–1.0×10?2 M) with a limit of detection of 8.0×10?8 M. It has a fast response time of ca. 10 s and can be used over a period 2 months with good reproducibility (SD=±0.2 mV). The electrode revealed a very good selectivity respect to common alkali, alkaline earth, transition and heavy metal ions and could be used in the pH range of 3.5–6.8. It was used as an indicator electrode in potentiometric titration of lead ions with chromate and oxalate, and in indirect determination of lead in spring water samples.  相似文献   

9.
《Electroanalysis》2004,16(16):1330-1335
A poly(vinyl chloride) membrane sensor based on oxalic acid bis (cyclohexylidene hydrazide) as membrane carrier was prepared and investigated as a Cr(III)‐selective electrode. The electrode reveals a Nernstian behavior (slope 19.8±0.4 mV decade?1) over a wide Cr(III) ion concentration range 1.0×10?7–1.0×10?2 mol dm?3 with a very low limit of detection (i.e., down to 6.3×10?8 mol dm?3). The potentiometric response of the sensor is independent of the pH of the test solution in the pH range 1.7–6.5. The electrode possesses advantage of very fast response, relatively long lifetime and especially good selectivity to wide variety of other cations. The sensor was used as an indicator electrode, in the potentiometric titration of chromium ion and in the determination of Cr(III) in waste water and alloy samples.  相似文献   

10.
《Electroanalysis》2005,17(10):895-900
A highly sensitive and selective membrane electrode with 9‐crown‐3 derivative (CD) as ionophore, potassium tetrakis‐(p‐chlorophenyl) borate as anionic additive (KTB), acetophenone (AP) as solvent mediator was prepared and investigated as a Be(II) sensor. The best performance was observed with the membrane having the percent ratio 30% PVC: 8% CD: 6% KTB: 56% Acetophenone. The poly(vinyl chloride) PVC membrane containing 9‐crown‐3 derivative (CD) directly coated on a graphite electrode, shows a Nernstian response for Be(II) ions over a very wide concentration range (1.0×10?1?1.0×10?7 M) with a detection limit of 8.0×10?8 M (ca. 0.72 ng/mL). It has a fast response time of ca. 20 s and can be used for at least 10 weeks without any major deviation in potential. The proposed sensor exhibits very good selectivity with respect to common alkali, alkaline earth, transition and heavy metal ions. The proposed sensor was used as end point indicator electrode in the titration of Be(II) ions with EDTA. It was also applied to determination of Be(II) in real sample.  相似文献   

11.
A highly selective poly(vinyl chloride) (PVC) membrane electrode based on Co(III)-Schiff base [Co(5-NO2- Salen)(PBu3)]ClO4•H2O (where 5-NO2-SalenH=bis(5-nitrosalycilaldehyde)ethylenediamine) as a new carrier for construction of perchlorate-selective electrode by incorporating the membrane ingredients on the surface of a graphite electrodes has been reported. The proposed electrode possesses a very wide Nernestian potential linear range to perchlorate from 1.0×10-6 to 5.0×10-1 mol•L-1 with a slope of (59.4±0.9) mV per decade of perchlorate concentration with a low detection limit of 5.0×10-7 mol•L-1 and good perchlorate selectivity over the wide variety of other anions. The developed electrode has an especially fast response (<5 s) and a wide pH independent range (3.0—12.0) in comparison with recent reported electrodes and can be used for at least 2 months without any considerable divergence in their potential response. This electrode was used for the determination of perchlorate in river water, drinking water, sludgy water and human urine with satisfactory results without complicated and time consuming pretreatment.  相似文献   

12.
《Electroanalysis》2003,15(2):139-144
A highly selective and sensitive membrane electrode based on vanadyl salen complex (VS), which responds to monohydrogenphosphate (MHP) ions is described. The response of the sensor is Nernstian over the wide concentration range (1.0×10?1 ? 5.0×10?6 M) of MHP. The sensitivity of the electrode is high enough to permit the detection of as little as 0.6 μg/mL of MHP without any significant interference from high levels of other anions. The potentiometric selectivity coefficient data revealed negligible interference from 11 common anions. The electrode has a fast response time (<25 s), good slope stability at pH 8.2 for a period of at least eight weeks. It was successfully applied for the direct determination of monohydrogenphosphate in fertilizer and, as indicator electrode, in potentiometric titration of HPO42? ion with barium chloride.  相似文献   

13.
A novel membrane sensor for selective monitoring of iodide, consisting of a triiodide‐ketoconazole ion pair complex dispersed in a PVC matrix, plasticized with a mixture of 2‐nitrophenyl octyl ether and dioctylphtalate with unique selectivity toward iodide ions, is described. The influence of membrane composition, pH of test solution and foreign ions on the electrode performance were investigated. The optimized membrane demonstrates a near‐Nernstian response for iodide ions over a wide linear range from 1.0 × 10?2 to 1.0 × 10?5 M, at 25 ± 1 °C. The electrode could be used over a wide pH range 3–10 and has the advantages of high selectivity, fast response time and good lifetime (over 4 months). It was successfully used as indicator electrode in potentiometric titrations and direct potentiometric assay of iodide ions.  相似文献   

14.
《Electroanalysis》2006,18(12):1186-1192
A PVC membrane electrode using [Bzo2Me2Ph2(16)hexaeneN4] ( I ) as ionophore, oleic acid as lipophilic additive and o‐nitrophenyloctyl ether as plasticizer has been investigated as Zn(II)‐selective electrode. The membrane incorporating 34.9% (w/w) PVC, 2.3% I , 4.7% OA and 58.1% o‐NPOE gave linear response over the concentration range 2.82×10?6?1.0×10?1 M with a Nernstian slope of 28.5±0.2 mV/decade of concentration with a detection limit of 2.24×10?6 M (0.146 ppm) and showed a response time of less than 10 s and could be used in pH range 2.5–8.5. High selectivity was obtained over a wide variety of metal ions. The proposed electrode was successfully used as an indicator electrode in potentiometric titration of zinc ions with EDTA and for determination of zinc in real samples.  相似文献   

15.
《Analytical letters》2012,45(9):1714-1735
Abstract

Highly selective poly(vinyl chloride) (PVC) membrane electrode based on recently synthesized mercury complex i.e., phenyl mercury (II) (2‐mercaptobezothiozolate) (PMMBT) as new carrier for iodide‐selective electrode by incorporating the membrane ingredients on the surface of graphite electrode are reported. The effect of various parameters including the membrane composition, pH, and possible interfering anions were investigated on the response properties of the electrode. The developed sensor exhibited Nernstian responses toward iodide over a wide concentration range of 1×10?7 to 0.1 M with slopes of 57.6±0.8 mV per decade of iodide concentration and detection limit of 8×10?8 M, over a wide pH ranges of 2.0–11.5. The sensors have response time of 0.5 s and can be used for at least 2 months without any considerable divergence in their potential response. The proposed electrode show good ability to discriminate iodide over several inorganic and organic anions.

The electrode was successfully applied to direct determination of iodide in synthetic mixture, waste water and drinking water, and pharmaceutical samples in addition to applying as indicator electrode in precipitation titration.  相似文献   

16.
《Analytical letters》2012,45(2):369-386
Abstract

Three kinds of transition metal chelates of unsymmetrical tetradentate Schiff base, o‐hydroxybenzophenone‐1,2‐diaminobenzene‐pyrrole‐2‐carbaldehyde(H2L), were synthesized to prepare anion‐selective electrodes and their anion response characteristics were investigated. The results show that the performances of the electrodes are considerably influenced by the nature of the central metals. The proposed electrode with the Cu(II)‐chelate and cationic additive demonstrated an anti‐Hofmeister selectivity sequence with a good selectivity towards thiocyanate in the following order: Thiocyanate>iodide>salicylate>perchlorate>bromide>nitrite>chloride>acetate>fluoride>nitrate>sulfite>sulfate. The electrode had an excellent linear response to thiocyanate from 3.4×10?7 to 1.0×10?1 M in phosphate buffer solution at pH 5.0 with a slope of ?58.7 mV per decade, a detection limit of 1.6×10?7 M, and a fast response time within 5 s over the entire concentration series. Spectroscopic techniques and AC impedance were used to investigate the response mechanism to thiocyanate of the membrane doped with Cu(II)‐chelate. The preliminary application of the electrode for determination of thiocyanate in wastewater and urine samples is reported.  相似文献   

17.
A PVC (poly vinyl chloride) membrane electrode for lead ion based on 2-(((E)-2-((E)-1-(2-hydroxyphenyl)methyliden)hydrazono)metyl)phenol (HMHMP) as a membrane carrier was prepared. This electrode exhibited linear response with Nernstian slope of 29.2?±?0.2?mV per decade within the concentration range of 2.0?×?10?7–1.0?×?10?1?M lead ion. The limit of detection, as determined from the intersection of the extrapolated linear segments of the calibration plot, was 8.0?×?10?8 M. The electrode exhibited high selectivity for Pb (II). The response time of the electrode was about 5–10?s for different concentrations. The electrode is suitable for use in aqueous solutions in a pH range of 5.0–7.5. It was used as an indicator electrode in a titration of Pb (II) with chromate at constant pH. This electrode was used for the determination of lead in ore samples, and the results were in agreement with those obtained with an atomic absorption spectroscopy (AAS) method. Also lead selective electrode was used for monitoring of lead in spiked samples of the Zayanderud River and waste water by the potentiometry technique.  相似文献   

18.
本文报道了一种以牛磺酸双核铜络合物为中性载体的硫氰酸根PVC膜电极。该电极对硫氰酸根有良好的电位响应并呈现出anti-Hofmeister行为,其选择性顺序SCN->I->ClO4->Sal->NO3-> NO2-> Br- > Cl- > SO3-> SO4 2-。在20℃ pH 5.0的磷酸缓冲溶液中,其线性范围为1.0´10 -1~ 1.0´10-6mol×L-1,检测线为8.0×10 -7mol•L-1,斜率为 -56.5 mV/pcSCN-。紫外、红外和交流阻抗研究表明电极的高选择性与载体的立体结构和分析物与中心金属离子的作用相关。将该电极用于废水和人体尿液中硫氰酸根的测定,获得了较满意的结果。  相似文献   

19.
In this work, a highly selective membrane triiodide sensor based on a new charge‐transfer complex of bis(2,4‐dimethoxybenzaldehyde)butane‐2,3‐dihydrazone with iodine (Iodide Charge Transfer complex: ICT) as membrane carrier is introduced. The influences of five different solvent mediators on sensitivity and selectivity of the proposed sensor were considered. The best performance was obtained with the membrane composition containing 30% poly (vinyl chloride), 63% DBP, 5% ICT and 2% HTAB. The electrode shows a Nernstian behavior over a very wide triiodide ion concentration range (1.0 × 10?7‐1.0 × 10?2 M), and a detection limit value of 8.0 × 10?8 M. The effect of pH on the potentiometric response of the sensor was also studied, and it was found that the response of the electrode is independent of the pH of the solution in the pH range of 4.0–10. The proposed sensor has a very fast response time (< 12 s), and good selectivities relative to a wide variety of common inorganic and organic anions, including iodide, acetate, bromide, chloride, fluoride, nitrite, nitrate, sulfite, sulfate, cyanide and thiocyanate. In fact the selectivity behavior of the proposed triiodide ion‐selective electrode shows great improvements compared to the previously reported electrodes for triiodide ion. The proposed membrane sensor can be used for at least 6 months without any divergence in the potentials. The electrode was successfully applied as an indicator electrode in the titration of triiodide with thiosulfate ion.  相似文献   

20.
A dichromate‐selective PVC‐membrane electrode based on Quinaldine Red (an acridinium derivative) is described. The electrode exhibits rapid (< 30 s) and linear response to the activity of Cr(VI) anions in the range of 5.2 × 10?6 ?1.0 × 10?1 M dichromate with the limit of detection 2.5 × 10?6 Mof Cr2O72?. The sensor is used as an indicator electrode in potentiometric determination of Cr(VI) anions and is also suitable for end‐point indication in the titrations of proper metal ions with dichromate under laboratory conditions. The proposed electrode has been applied to the direct potentiometric determination of Cr(VI) anions in water samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号