首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heteropoly molybdosilicic acid complex produces five well-developed differential pulse voltammetric peaks at a glassy carbon electrode in citrate buffer solutions containing 20% 2-butanone with peak potentials in the neighborhood of +0.05 V, -0.10 V, -0.25 V, -0.50 V and -0.65 V (vs. Ag/AgCl, 0.1 M KCl). The peak current at each peak potential is clearly developed and is proportional to the silicon concentration; the linear range for the most useful peak at +0.05 V is 10-5–10-7 M silicon, the lower limit being fixed by the blank conditions. Nickel-base alloy samples and water samples were analyzed with satisfactory results.  相似文献   

2.
A sensitive adsorptive stripping voltammetric method for the determination of dinitrophenolic herbicides, dinoseb (DSB) and dinoterb (DTB) at a bare carbon paste electrode (CPE) and a clay modified carbon paste electrode (CMCPE) was developed. A systematic study of various experimental conditions, such as the pH, accumulation variables and composition of a modifier on the adsorptive stripping response, were examined by using differential pulse voltammetry. A significant improvement was observed in the sensitivity by using the present method with CMCPE. When CMCPE was used, a linear response was obtained over the concentration range 2 x 10(-10) to 3 x 10(-7) M and 6 x 10(-10) to 6 x 10(-7) M with lower detection limits of 1 x 10(-10) M and 5.4 x 10(-10) M for dinoseb and dinoterb, respectively, at an accumulation time of 100 s. The interference from other herbicides and ions on the stripping signals of both compounds was also evaluated. The described method was applied to estimate of the dinoseb and dinoterb in environmental samples.  相似文献   

3.
Seven novel polymer modified glassy carbon electrodes have been developed for the analysis of metals of zinc, cadmium, lead, arsenic and copper in formulated samples of waters and industrial wastewater samples by differential pulse stripping voltammetry. Very good responses have been observed for all the metals with all the modified electrodes employed. However, the poly(3,4-ethylenedioxythiophene) modified electrode has resulted in very low detection limits. An independent atomic absorption spectroscopic analysis of the industrial wastewater sample was carried out and the results are compared.  相似文献   

4.
An electrochemical method for the determination of trace levels of mercury based on a multi-walled carbon nanotubes (MWNT) film coated glassy carbon electrode (GCE) is described. In 0.1 mol L–1 HCl solution containing 0.02 mol L–1 KI, Hg2+ was firstly preconcentrated at the MWNT film and then reduced at –0.60 V. During the anodic potential sweep, reduced mercury was oxidized, and then a sensitive and well-defined stripping peak at about –0.20 V appeared. Under identical conditions, a MWNT film coated GCE greatly enhances the stripping peak current of mercury in contrast to a bare GCE. Low concentrations of I remarkably improve the determining sensitivity, since this increases the accumulation efficiency of Hg2+ at the MWNT film coated GCE. The stripping peak current is proportional to the concentration of Hg2+ over the range 8×10–10–5×10–7 mol L–1. The lowest detectable concentration of Hg2+ is 2×10–10 mol L–1 at 5 min accumulation. The relative standard deviation (RSD) at 1×10–8 mol L–1 Hg2+ was about 6% (n=10). By using this proposed method, Hg2+ in some water samples was determined, and the results were compared with those obtained by atomic absorption spectrometry (AAS). The two results are similar, suggesting that the MWNT-film coated GCE has great potential in practical analysis.  相似文献   

5.
A catalytic adsorptive stripping voltammetric method for the determination of copper(II) on a carbon paste electrode (PCE) in an alizarin red S (ARS)-K2S2O8 system is proposed. In this method, copper(II) is effectively enriched by both the formation and adsorption of a copper(II)-ARS complex on the PCE, and is determined by catalytic stripping voltammetry. The catalytic enhancement of the cathodic stripping current of the Cu(II) in the complex results from a redox cycle consisting of electrochemical reduction of Cu(II) ion in the complex and subsequent chemical oxidation of the Cu(II) reduction product by persulfate, which reduces the contamination of the working electrode from Cu deposition and also improves analytical sensitivity. In Britton-Robinson buffer (pH 4.56±0.1) containing 3.6×10−5 mol L−1 ARS and 1.6×10−3 mol L−1 K2S2O8, with 180 s of accumulation at −0.2 V, the second-order derivative peak current of the catalytic stripping wave was proportional to the copper(II) concentration in the range of 8.0×10−10 to ∼3.0×10−8 mol L−1. The detection limit was 1.6×10−10 mol L−1. The proposed method was evaluated by analyzing copper in water and soil.  相似文献   

6.
We report on an anodic stripping voltammetric method for the determination of tin using a glassy carbon electrode modified with bismuth and poly(bromophenol blue). After an accumulation time of 60?s at ?1.20?V (vs. SCE), the response of the electrode to tin in 1.0?M HCl is linear in the concentration ranges from 20 nM to 1.0?μM, and from 1.0?μM to 20?μM, with a detection limit of 7.0 nM (at an SNR of 3) and with relative standard deviations in the order of 3.0–3.8%. The method was validated by comparing the results with those obtained by AAS and successfully applied to the determination of tin in canned food.
Figure
Differential pulse stripping voltammetric responses of Sn2+ at Bi/Poly(BPB)/GCE in 1.0 M HCl . Sn2+ concentration (μM): 0.020, 0.10, 0.30, 0.50, 0.70, 1.0, 3.0, 5.0, 7.0, 10.0 and 20.0. Inset: Differential pulse stripping voltammograms of circle portion at low Sn2+ concentration are zoomed in.  相似文献   

7.
8.
The complex formation between uric acid and zinc, cadmium and lead ions has been investigated using differential pulse polarography in 0.01M NaNO(3). It is found that the complexes formed by Cd(II) and Pb(II) ions with uric acid have the stoichiometry of 1:2 and the logarithmic values of the apparent stability constant are 9.47 and 11.7, respectively. On the other hand, zinc(II) ions do not give any indication of complexation with uric acid. A sensitive voltammetric method is developed for the quantitative determination of uric acid. This method is based on controlled adsorptive preconcentration of uric acid on the hanging mercury drop electrode (HMDE), followed by tracing the voltammogram in the cathodic going potential scan. The modes used are direct current stripping voltammetry (DCSV) and differential pulse stripping voltammetry (DPSV). The detection limits found were 8 x 10(-9)M (quiescent period 15 sec) by DPSV and 1.6 x 10(-8)M by DCSV.  相似文献   

9.
A sensitive method for the simultaneous determination of trace amounts of nickel and cobalt in pure aluminium has been described using differential pulse adsorptive stripping voltammetry (DPASV) by adsorptive accumulation of the dimethyl glyoxime (DMG) complex on the hanging mercury drop electrode (HMDE). As supporting electrolyte 0.1 mol/l ammonia buffer, pH 9.0, containing ammonium citrate and 5×10–4 mol/l DMG has been used. The determination limit obtained has been as low as 0.5 g/g for Ni and 0.2 g/g for Co (using about 100 mg sample) with a relative standard deviation of 13% and 22%, respectively.  相似文献   

10.
Ly SY  Kim DH  Kim MH 《Talanta》2002,58(5):919-926
A mercury film (MF) is prepared by an electrochemical deposition on a glassy carbon electrode (GCE), and employed for an analysis of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using square-wave stripping voltammetry (SWSV). RDX was deposited at -0.15 V (vs. Ag/AgCl) for 120 s, then reduced at -0.7 V on the MF coated GCE(MFGCE). Optimal experimental conditions were searched and reported for the analysis. Two linear concentration ranges were observed: one in a lower RDX concentration range of 0.2-10 mg l(-1) and the other in a higher RDX concentration range of 10.0-100.0 mg l(-1) with a 120 s of pre-concentration time. At RDX concentrations of 2 and 8 mg l(-1), the relative standard deviations in measured concentrations (n=16) were 9.79 and 0.49%, respectively. The detection limit found to be 0.12 mg l(-1) with the 120 s accumulation time. The method was applied to determine RDX in several soil samples that yielded a relative error of 1% in the concentrations.  相似文献   

11.
The adsorptive and electrochemical behaviors of azithromycin were investigated on a glassy carbon electrode that was electrochemically treated by anodic oxidation at +1.8 V, following potential cycling in the potential range from -0.8 to +1.0 V. The resulting electrode showed good activity to improve the electrochemical response of the drug. An adsorptive stripping voltammetric method for the determination of azithromycin at an electrochemically activated glassy carbon electrode has been developed. Azithromycin was accumulated in phosphate buffer, pH 6, at a potential of +0.3 V (vs. Ag/AgCl electrode) for a certain time, and then determined by differential pulse voltammetry. The oxidative peak current at +0.82 V, at a scan rate of 20 mV s(-1), was a linear function of the concentration in the ranges of 0.25 - 2 microg mL(-1) and 1 - 10 microg mL(-1) using a 240 or 60 s(-1) preconcentration time, respectively. Application of the method to the determination of azithromycin in pharmaceuticals resulted in an acceptable deviation from the stated concentration. The preconcentration medium-exchange approach was utilized for the selective determination of the drug in spiked urine samples with satisfactory results. The peak current was linear with the drug concentration in the range of 0.5 - 3.5 microg per mL urine. The detection limit was 0.2 microg mL(-1) urine. The recovery levels of the method reached 96.3%.  相似文献   

12.
We have developed a method for the determination of the three catecholamines (CAs) epinephrine (EP), norepinephrine (NE), and dopamine (DA) at sub-nanomolar levels. It is found that the luminescence of the complexes formed between the CAs and Tb3+ ion is strongly enhanced in the presence of colloidal silver nanoparticles (Ag-NPs). The Ag-NPs cause a transfer of the resonance energy to the fluorophores through the interaction of the excited-state fluorophores and surface plasmon electrons in the Ag-NPs. Under the optimized condition, the luminescence intensity of the system is linearly related to the concentration of the CAs. Linearity is observed in the concentration ranges of 2.5–110?nM for EP, 2.8–240?nM for NE, and 2.4–140?nM for DA, with limits of detection as low as 0.25?nM, 0.64?nM and 0.42?nM, respectively. Relative standard deviations were determined at 10?nM concentrations (for n?=?10) and gave values of 0.98%, 1.05% and 0.96% for EP, NE and DA, respectively. Catecholamines were successfully determined in pharmaceutical preparations, and successful recovery experiments are demonstrated for urine and serum samples.
Figure
Schematic presentation of Ag NP-enhanced luminescence of Tb3+-CA complex. (A) Luminescence intensity at 545 nm of Tb3+-EP complex is lower than that of (B) Tb3+-EP-Ag NP system when both are excited at the wavelength of 279 nm.  相似文献   

13.
The determination of copper (II) and iron (III) added to an anaerobic adhesive formulation was investigated by differential pulse voltammetry after application of a solution of the adhesive in acetone to a glassy carbon electrode. The best supporting electrolyte was 0.1 M sodium dodecyl sulphate, which ensured adequate surface contact with the adhesive coating. Under optimum conditions, copper (II) (as CuEDTA 2?) could be determined at levels down to 0.1 mg l?1 and iron (III) (in some complexed form) down to 2.0 mg l?1. The method is also capable of detecting the presence of poly (ethylene glycol) dimethacrylate, cumene hydroperoxide and N,N-dimethyl-p-toluidine in a typical formulation.  相似文献   

14.
在0.40 mol/L的NaAc-HAc(pH 4.5)缓冲液中,使用JP-303极谱分析仪,依诺沙星在碳糊电极(CPE)上有一灵敏的吸附伏安氧化峰,峰电位为1.17 V(vs.SCE).该氧化峰的二阶导数峰电流与依诺沙星的浓度在4.0×10-9~4.0×10-7 mol/L(富集90 s)范围内呈良好的线性关系,相关系数为0.995,检出限为2.0×10-9 mol/L(S/N=3,富集110 s).探讨了依诺沙星在碳糊电极上的伏安性质和电极反应机理,并且用于诺佳胶囊中依诺沙星的测定.  相似文献   

15.
A Nafion-modified glassy carbon electrode incorporated with tobramycin for the voltammetric stripping determination of Cu2+ has been explored. The electrode was fabricated by tobramycin containing Nafion on the glassy carbon electrode surface. The modified electrode exhibited a significantly increased sensitivity and selectivity for Cu2+ compared with a bare glassy carbon electrode and the Nafion modified electrode. Cu2+ was accumulated in HAc-NaAc buffer (pH 4.6) at a potential of -0.6 V (vs. SCE) for 300 s and then determined by differential pulse anodic stripping voltammetry. The effects of various parameters, such as the mass of Nafion, the concentration of tobramycin, the pH of the medium, the accumulation potential, the accumulation time and the scan rate, were investigated. Under the optimum conditions, a linear calibration graph was obtained in the concentration range of 1.0 x 10(-9) to 5.0 x 10(-7) mol l(-1) with a correlation coefficient of 0.9971. The relative standard deviations for eight successive determinations were 4.3 and 2.9% for 1.0 x 10(-8) and 2.0 x 10(-7) mol l(-1) Cu2+, respectively. The detection limit (three times signal to noise) was 5.0 x 10(-10) mol l(-1). A study of interfering substances was also performed, and the method was applied to the direct determination of copper in water samples, and also in analytical reagent-grade salts with satisfactory results.  相似文献   

16.
The anodic voltammetric behavior of methotrexate was studied at glassy carbon electrode in acetate buffer (pH = 3.6) solution using cyclic, square-wave voltammetric and chronocoulometric techniques. The oxidation of methotrexate is an irreversible diffusion-controlled process. The oxidation mechanism was proposed and discussed in this work. The dependence of the current on pH, the concentration and nature of buffer, and instrumental parameters were investigated to optimize the experimental conditions for the determination of methotrexate. It was found that in the range of 8.0 × 10−7–2.0 × 10−5 mol/L, the currents measured by square-wave voltammetry presented a good linear property as a function of the concentrations of methotrexate. In addition, validation parameters, such as reproducibility, sensitivity and recovery were evaluated as well. The proposed method was also successfully applied for the determination of methotrexate in diluted human urine with good satisfactory.  相似文献   

17.
Summary The determination of aniline by means of a carbon paste electrode (CPE) modified with 10% sepiolite was studied using differential pulse voltammetry. The best pre-concentration was achieved at pH 6.9 over 5 min and the besti p in the measuring cell was obtained at pH 1.5 using E = 100 mV and a scan rate of 40 mV/s.Under these conditions detection limits (10 ) of 15 ng/ ml were obtained. The method was applied to different beverages without the need for prior separation.
Differentialpuls-voltammetrische Bestimmung von Anilin mit einer Sepiolit-modifizierten Kohlepaste-Elektrode
  相似文献   

18.
A sensitive and selective method for the determination of procaine hydrochloride with a Nafion-modified glassy carbon electrode has been developed. The voltammetric behavior of procaine hydrochloride on the Nafion-modified electrode indicated that the modified electrode not only increased the sensitivity of the determination of procaine hydrochloride, but also catalyzed the electrode process. Procaine hydrochloride was accumulated in Britton-Robinson buffer (pH 2.09) at a potential of -0.2 V (vs. SCE) for 180 s, and was then determined by differential pulse adsorptive stripping voltammetry. The effect of various parameters, such as the pH of the medium, the mass of drop-coated Nafion, the accumulation potential, the accumulation time and the scan rate, were investigated. Under the optimum conditions, a linear calibration graph was obtained in the concentration range of 6.0 x 10(-8) to 6.0 x 10(-6) mol l(-1) with a correlation coefficient of 0.9987. The relative standard deviation was 4.18% for eight successive determinations of 1.0 x 10(-7) mol l(-1) procaine hydrochloride, and the detection limit (three times signal to noise) was 7.0 x 10(-9) mol l(-1). A study of interfering substances was also performed, and the method was applied to the direct determinations of procaine hydrochloride in the injection solution of procaine hydrochloride and in rabbit serum.  相似文献   

19.
This study presents a method for the selective determination of Hg(II) using electromembrane extraction (EME), followed by square wave anodic stripping voltammetry (SWASV), using a gold nanoparticle-modified glassy carbon electrode, (AuNP/GCE). By applying an electrical potential of typically 60 V for 12 min through a thin supported liquid membrane (1-octanol), Hg(II) ions are extracted from a donor phase (i.e., the sample solution) to an acidic acceptor solution (15 μL) placed in the lumen of a hollow fiber. The influences of experimental parameters during EME were optimized using face-centered central composite design. The calibration plot, established at a working voltage of 0.55 V (vs. Ag/AgCl), extends from 0.2 to 10 μg.L?1 of Hg(II). The limit of detection, at a signal to noise ratio of 3, is 0.01 μg.L?1 and the relative standard deviations (for 5 replicate determinations at 3 concentration levels) are between 7.5 and 8.7 %. The method was successfully applied to the determination of Hg(II) in spiked real water samples to give recoveries ranging from 89 to 97 %. The results were validated by cold vapor atomic absorption spectroscopy.
Graphical abstract Hg(II) ions were extracted from a donor phase into an acidic acceptor phase (15 μL) placed in the lumen of a hollow fiber using electromembrane extraction. The acceptor phase was then analyzed using anodic stripping voltammetry.
  相似文献   

20.
In situ mercury film electrode produced in the presence of thiocyanate has been shown extremely useful for highly sensitive adsorptive stripping voltammetric measurements of atrazine down to sub-μg L−1 level. Operational parameters have been optimized and the stripping voltammetric performance has been investigated using square wave scans. The adsorptive stripping response is linear over the range of 0.5-60 μg L−1 atrazine, with a detection limit of 0.024 μg L−1. The method has been applied to the determination of atrazine in soil and water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号