首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different types of industrially produced titanium dioxide nanoparticles and a precipitated titanium dioxide have been dissolved in aqueous NaCl solutions at temperatures of 25 and 37 degrees C. The titanium concentration in solution with regard to dependence on time has been determined up to 3000 h after starting the dissolution experiment. The effect of particle size, pH value, temperature, background electrolyte concentration, and mass concentration of titanium dioxide exposed to the liquid phase has been studied. The nanoparticles have been characterized by N2 physisorption measurements and XRD. The total dissolved titanium in solution has been determined by adsorptive stripping voltammetry (AdSV) and inductively coupled plasma mass spectrometry (ICP-MS). A new kinetic size effect has been observed. It turns out that this effect can be explained by applying an already existing phenomenological thermodynamic and kinetic model. The model describes all possible phenomena in a colloidal dispersion, nucleation, growth of particles, Ostwald ripening, and dissolution of particles using a uniform concept.  相似文献   

2.
Understanding size-dependent processes, including dissolution, of engineered nanoparticles is essential in addressing the potential environmental and health impacts of these materials as well as their long-term stability. In this study, experimental measurements of size-dependent dissolution of well-characterized zinc oxide (ZnO) nanoparticles with particle diameters in the range of 4 to 130 nm have been measured at circumneutral pH (pH 7.5) and compared. Dissolution was found to be enhanced with smaller ZnO nanoparticles compared to larger-sized particles, even though the nanoparticles were present in solution as aggregates with hydrodynamic diameters on the order of 1-3 μm in size. The presence of citric acid significantly enhanced the extent of ZnO dissolution for all sizes, and the greatest enhancement was observed for the 4 nm particles. Although these results are found to be in qualitative agreement with theoretical predictions, a linearized form of the Kelvin equation to calculate a surface free energy yielded quantities inconsistent with expected values from the literature. Reasons for this inconsistency are discussed and include potential deviations of solubility behavior from classical thermodynamics as a result of a lack of detailed knowledge of surface structure and surface properties, including the presence of different surface crystal facets, and the aggregation state.  相似文献   

3.
Nanocomposites consisting of spherical particles of Ag were prepared using a single step in situ method whereby Ag is introduced into the dissolved polymer via dissolution as the organometallic complex Ag TFA in the same solvent as the polymer. The kinetic rate of formation of the particles is determined using WAXS and SAXS measurements. Nanoparticle formation is found to depend on reducing the solvent/polymer ratio, which leads to de-solvating the metal complex. This destabilizes the metal precursor complex, causing it to degrade and the metal particles to phase separate by a thermodynamic driving force. The size of the nanoparticles varies with the cure temperature and the conditions affecting molecular mobility.  相似文献   

4.
The size evolution of gold nanoparticles in a millifluidic reactor is investigated using spatially resolved transmission electron microscopy (TEM). The experimental data is supported by numerical simulations, carried out to study the residence-time distribution (RTD) of tracers that have the same properties as Au ions. Size and size distribution of the particles within the channels are influenced by the mixing zones as well as the RTD. However, the Au nanoparticles obtained show a broader size distribution even at the shortest investigated residence time of 3.53 s, indicating that in addition to surface growth reaction kinetics also plays an important role. The comparison of time resolved particle growth within the millifluidic channel with flask-based reactions reveals that the particle size can be controlled better within millifluidic channels. Overall, the results indicate potential opportunities to utilize easy to fabricate millifluidic reactors for the synthesis of nanoparticles, as well as as for carrying out time resolved kinetic studies.  相似文献   

5.
The effects of size, charge, and solubility on the condensation of supersaturated n-butanol vapor on monodisperse nanoparticles of D-mannose and L-rhamnose are investigated in a flow cloud chamber. The dependence of the critical supersaturation S(cr) on particle size in the range from 30 to 90 nm is determined experimentally. The results show that the experimental S(cr) decreases with increasing particle size and solubility, qualitatively in agreement with the prediction by the Volmer theory of nucleation on soluble particles and by the Kohler theory, but quantitatively smaller than both theoretical predictions. The condensation of supersaturated vapor on singly positive/negative charged particles with diameters of 30, 60, and 90 nm is examined, and no obvious charge effect and sign preference are observed.  相似文献   

6.
The development of surface roughness during dissolution of spherical particles is studied by the Monte Carlo method. The simulation results are used to analyze the dissolution kinetics of silicon dioxide aerogels in an aqueous solution of alkali (NaOH). The suggested model is shown to be suitable for describing the experimental dissolution curves obtained for aerogels with a small diameter of primary particles (3.5 and 2.9 nm). For aerogels with larger particles, a good agreement with the experiment can be achieved under the additional assumption that only part (p < 1) of the particle surface is originally active in dissolution; the best agreement is reached at p 0.5. In the kinetic regime of dissolution, the dissolution rate may be more than three times higher (owing to the formation of rough surfaces of primary particles with relatively large diameters, 40 atoms or more) than the rate calculated for the same parameters within the framework of the modified Delmon model, which does not make allowance for the development of roughness. Relatively small particles (with the diameter of less than 15 atoms) are dissolved before a significant roughness can be developed; therefore, the kinetic curves obtained for both models have virtually identical shapes in this case. The formation of roughness has an especially large effect on the dissolution of intermediate-size particles, whose dissolution time has the same order of magnitude as the time required for establishment of the steady-state roughness.  相似文献   

7.
Amorphous drug nanosuspensions. 3. Particle dissolution and crystal growth   总被引:1,自引:0,他引:1  
In the present paper, we have studied particle dissolution and crystal growth of the poorly water soluble drug felodipine, using fluorescence as a probe for the amount of crystalline material. Dissolution kinetics is essentially diffusion-controlled, while the rate of crystal growth is significantly slower compared to the diffusion-controlled limit. The deviation from diffusion control was characterized by the effective length, lambda, related to the kinetics of a surface integration process. Amorphous nanoparticles may be highly unstable in the presence of small amounts of crystalline particles. This is due to the fact that the molecular solubility from the amorphous nanoparticles often is at least an order of magnitude higher than the corresponding crystalline solubility. In a mixed system where crystalline nanoparticles have been added to an amorphous nanosuspension, the bulk will have a monomer concentration intermediate between the amorphous and crystalline solubilities, and is thus supersaturated with respect to the crystalline particles while being undersaturated with respect to the amorphous particles. As a consequence, the amorphous particles spontaneously dissolve, while crystalline particles grow, in a combined process which is similar to Ostwald ripening. By knowing the parameters describing dissolution and crystal growth, respectively, it was possible to simulate the outcome of controlled seeding experiments, where a small amount of crystalline nanoparticles was added to a dispersion of amorphous nanoparticles. A good agreement between model calculations and experiments was obtained including how the crystal growth rate varied with the amounts of added crystalline seeds.  相似文献   

8.
Au particles (mean size ca. 3 nm) supported on TiO(2) particles were irradiated by UV light (>300 nm) in aqueous solutions at 278 K. Photo-induced dissolution of Au nanoparticles followed by redeposition occurred in aqueous solutions containing halogen ions. The dissolution of Au nanoparticles yielded a Au(III) complex with a halogen ion; subsequent reduction of the Au(III) complex caused precipitation of larger Au particles on TiO(2).  相似文献   

9.
Colloidal Au/Ag multilayer films were prepared by alternate assembly of Au nanoparticles with a size of 5 +/- 1.2 nm and Ag nanoparticles with a size of 10 +/- 2.4 nm by using 1,5-pentanedithiol as cross-linker. Nanoporous gold films with a ligament size of 26.7 +/- 4.6 nm were then prepared by selective dissolution of sacrificial templates of silver particles in colloidal Au/Ag multilayers. The complete dissolution of Ag particles in colloidal Au/Ag multilayers in a mixture solution of 3.0 mM HAuCl(4) and 3 M NaCl took place at room temperature without damage of the colloidal Au film. This method to prepare nanoporous gold films was further extended to the preparation of nanoporous gold nanotubes by depositing colloidal Au/Ag film on the inner wall of anodic aluminum oxides (AAO) followed by dissolution of colloidal Ag and removal of AAO templates.  相似文献   

10.
Dissipative particle dynamics simulations were used to study the effects of mixing time, solute solubility, solute and diblock copolymer concentrations, and copolymer block length on the rapid coprecipitation of polymer-protected nanoparticles. The simulations were aimed at modeling Flash NanoPrecipitation, a process in which hydrophobic solutes and amphiphilic block copolymers are dissolved in a water-miscible organic solvent and then rapidly mixed with water to produce composite nanoparticles. A previously developed model by Spaeth et al. [J. Chem. Phys. 134, 164902 (2011)] was used. The model was parameterized to reproduce equilibrium and transport properties of the solvent, hydrophobic solute, and diblock copolymer. Anti-solvent mixing was modeled using time-dependent solvent-solute and solvent-copolymer interactions. We find that particle size increases with mixing time, due to the difference in solute and polymer solubilities. Increasing the solubility of the solute leads to larger nanoparticles for unfavorable solute-polymer interactions and to smaller nanoparticles for favorable solute-polymer interactions. A decrease in overall solute and polymer concentration produces smaller nanoparticles, because the difference in the diffusion coefficients of a single polymer and of larger clusters becomes more important to their relative rates of collisions under more dilute conditions. An increase in the solute-polymer ratio produces larger nanoparticles, since a collection of large particles has less surface area than a collection of small particles with the same total volume. An increase in the hydrophilic block length of the polymer leads to smaller nanoparticles, due to an enhanced ability of each polymer to shield the nanoparticle core. For unfavorable solute-polymer interactions, the nanoparticle size increases with hydrophobic block length. However, for favorable solute-polymer interactions, nanoparticle size exhibits a local minimum with respect to the hydrophobic block length. Our results provide insights on ways in which experimentally controllable parameters of the Flash NanoPrecipitation process can be used to influence aggregate size and composition during self-assembly.  相似文献   

11.
The dissolution of a technical, nanodispersed gamma-alumina in water was studied at 25 degrees C in the pH range 3.0 < or = pH < or = 11.0. The obtained kinetic dissolution curves showed a distinct pH dependency, whereas only for pH > or = 4.5 the typical behavior of nanodispersed materials could be observed. X-ray powder diffraction analysis and nitrogen adsorption, as well as IR and UV-Raman spectroscopy, were used to characterize the solid material collected during and at the end of each dissolution experiment. As a result the formation of a new aluminum phase-bayerite-could be proven. The analysis of the equilibrium concentration enabled us to determine the solubility constant of the corresponding phase assuming a pH-dependent species distribution. The rate constants of the dissolution process were evaluated using the model of Gibbs free energy of cluster formation, which considers the size effect, among other things. As a result, we could show that the observed maxima in the concentration profiles are due to a size effect of the starting material having a primary particle radius of 10.1 nm.  相似文献   

12.
Intrinsically self-stabilized nanoparticles of a copolymer from 4-sulfonic diphenylamine (SD) and pyrrole (PY) were facilely synthesized in HCl solution at 10 degrees C by a chemically oxidative polymerization. The critical reaction parameters such as SD/PY ratio, polymerization time, and oxidant species were studied to significantly optimize the polymerization yield, size, conductivity, and solubility of the final copolymer particles. The molecular structure, size, size distribution, and morphology of the particles were analyzed by IR spectroscopy, laser particle-size analysis (LPA), atomic force microscopy, and transmission electron microscopy (TEM). It was found that the polymerization yield of the SD/PY (50/50) copolymers increased dramatically in the initial 2 h of polymerization and then slowly enlarged in the subsequent 22 h. However, the copolymerization yield for the polymerization time of 24 h exhibited a nonlinear dependence on the SD/PY molar ratio, i.e., a maximum at 10/90 and a minimum at 80/20. The number-average diameter, Dn, of the copolymer particles strongly depended on the SD/PY ratio, decreasing rapidly from 6402 to 291 nm as the SD/PY molar ratio changed from 30/70 to 50/50, whereas the polydispersity index, PDI = Dw/Dn (where Dw is the weight-average diameter), surprisingly maintained very small values, decreasing slightly from 1.21 to 1.08. The SD/PY (80/20) copolymer particles prepared with (NH4)2S2O8 as the oxidant had the smallest size of ca. 10 nm by TEM and the lowest Dw/Dn value of 1.03 by LPA, whereas the copolymer particles prepared with FeCl3 as the oxidant exhibited the second smallest size of ca. 20 nm by TEM and the highest conductivity. The conductivity of the SD/PY (50/50) copolymers rose first and then decreased with increasing polymerization time from 10 min to 24 h, exhibiting a maximum (0.217 S/cm) at 12 h. It is of interest that the copolymer particles with SD/PY molar ratios in the range between 50/50 and 80/20 surprisingly exhibited the smallest size, the narrowest size distribution, and the highest conductivity at the same time. In particular, the copolymer nanoparticles exhibited high purity, clean surfaces, good self-stability, high conductivity, and strong chemoresistance that were very important to nanomaterial processibility and application. The obtained copolymers were partially soluble in concentrated H2SO4, demonstrating a new direction for synthesizing a soluble pyrrole copolymer.  相似文献   

13.
Modified chitosans with 3,4-di-hydroxy benzoyl groups (CS-DHBA) and 3,4,5-tri-hydroxy benzoyl groups (CS-THBA) were synthesized and their nanoparticles were prepared via ionic crosslinking by tripolyphosphate (TPP). The chemical structure and degree of substitution (DS) of di-and tri-hydroxy benzoyl chitosans are determined by FTIR and 1H-NMR spectroscopy. The morphology of particles, size distribution and zeta potential of nanoparticles were studied using transmission electron microscopy (TEM) and dynamic light scattering (DLS), respectively. The mean diameters of particles of CS-DHBA and CS-THBA nanoparticles were 144 nm and 112 nm, respectively. It was found that the particles size decreased slightly with decreasing the degree of substitution and increasing degree of deacetylation (DD), due to increasing of ionic crosslinking of ammonium ions and polyanions of tripolyphosphate. The TEM photographs of CS-DHBA show that these particles are spherical in shape, but the particles of CS-THBA show some aggregation. In addition, the solubility and the mechanical properties of the prepared modified chitosans and their nanoparticles were evaluated for bio-adhesive and biomedical application. The results of solubility tests indicated that, the CS-DHBA and CS-THBA have higher solubility at pH > 7 comparing to CS. Also the CS-DHBA, CS-THBA and their nanoparticles showed a significant adhesive capacity and enhanced tensile strength and tensile modulus.  相似文献   

14.
The results of a systematic study of the preparation of CdS colloids in aqueous solutions containing different Cd2+ complexonates are presented. The effects of the ratio of the reagents and the nature and concentration of various stabilizing surfactants and Cd2+ complexonates, including those of some sulfur-containing compounds, on the size of the colloidal particles have been studied. Thermodynamic calculation of the expected equilibrium size of the colloidal particles as a function of the solvent composition, taking into account the increase in the solubility of the CdS phase as the particle size decreases, has been performed. Comparison of the calculated results with the experimental data shows that the size of colloidal particles is determined to a great extent by kinetic factors of their growth rather than by thermodynamic factors. It has been established that when the size of colloidal particles is less than a critical value, their dissolution by adding strong compexing agents to the system does not result in a change in the observed mean-volume size of the particles.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1739–1746, September, 1995.The authors are grateful to A. L. Chuvilin (G. K. Boreskov Institute of Catalysis, SB of the RAS) for help in preparing the electron photomicrographs.The work was financially supported by the Russian Foundation for Basic Research (Project No. 93-03-4816).  相似文献   

15.
The effects of size, charge, dissolution, and dissociation on the condensation of supersaturated water vapor on monodisperse nanoparticles of glucose and monosodium glutamate (MSG) were investigated in a flow cloud chamber (FCC). The dependence of the critical supersaturation, S(cr), on particle size in the range of 30 to 90 nm and on temperature in the range of 10 to 50 degrees C were determined experimentally. The results show that the experimental S(cr) decreases with increasing particle size at a rate in reasonable agreement with the predictions of the Kohler and Volmer theories of nucleation for soluble particles, but decreases with increasing temperature at a rate higher than the prediction of the Volmer theory. The dissociation of MSG into ions lowers the experimental S(cr) to a value smaller than that for the more soluble glucose, agreeing with predictions. The experimental S(cr) is smaller than the predictions of both theories, and the discrepancy cannot be fully explained by the reductions in surface tension due to the dissolution of particles and curvature dependence. The condensation of supersaturated vapor on singly positively charged particles with diameters of 30, 60, and 90 nm was also examined, and no obvious charge effect on S(cr) was observed.  相似文献   

16.
Core-in-shell particles with controllable core size have been fabricated from core-shell particles by means of the controlled core-dissolution method. These cores in inorganic shells were employed as scaffolds for the synthesis of metal nanoparticles. After dissolution of the cores, metal nanoparticles embedded in cores were encapsulated into the interior of shell, without any damage or change. This article describes a very simple method for deriving core-in-shell particles with controllable core size and encapsulation of nanoparticles into the interior of shell.  相似文献   

17.
表面能与晶体生长/溶解动力学研究的新动向   总被引:3,自引:0,他引:3  
唐睿康 《化学进展》2005,17(2):0-376
界面现象使物质在结晶过程中出现了临界现象.但最近的研究指出在物质溶解过程中,在表面能量的控制下也存在着临界现象以及尺寸效应.实验发现,当晶体自身小到一 定的程度时(通常在纳米尺度上并和临界蚀坑的大小相近),在溶解过程中其速度会自发降 低,反应被抑制乃至停止.尽管在热力学上表面能的因素可以赋予小颗粒晶体较大的溶解度 ,但表面能却也能通过对临界条件的控制而使这些微粒在动力学上不被溶解.这个发现不仅 解决了纳米颗粒在水溶液中稳定性的问题,而且还从动力学的角度解释了生物矿物选择纳米 尺度作为其基本构成单元的原因.由于表面能和晶体生长/溶解的动力学有着密切的关系, 我们可以通过对表面能的调节来修改它们的动力学速度和晶体的形貌.反过来,也可以用动力学的方法来测定表面能及表面吸附/脱附常数等.相对于常规的界面研究手段,通过生 长和溶解动力学途径所得的数据有着很好的可靠性及重复性.我们认为,晶体生长和溶解的 动力学和表面能的研究相结合,不仅为界面研究提供了新的思路和方法,而且也会推动晶体生长和材料科学的发展.  相似文献   

18.
Spectrophotometric, kinetic, and transmission electron microscopic (TEM) data for the formation of Ag-nanoparticles using aspartic acid (Asp) as reductant are reported for the first time. In the formation of transparent silver sols, an alkaline medium is required. The silver nanoparticles are spherical, uniform particle size, and strongly depend on the [Asp]. The apparent rate constant decreases with [Asp] (from 4.0 to 24.0×10(-4)moldm(-3), the rate constants decreased from 2.6×10(-4) to 0.3×10(-4)s(-1)). For a certain reaction time, i.e., 30min, the absorbance of the silver sol first increased until it reached a maximum, and then decreased with [Asp]. Kinetic and TEM results indicate that the size of the Ag-nanoparticles depends on the [Asp]. It is proposed that the oxidation of Asp occurs by the adsorbed Ag(+) ions on the surface of Ag(2)O particles.  相似文献   

19.
In this work turbulent precipitation through solvent displacement for the production of poly-epsilon-caprolactone (PCL) nanoparticles is investigated; two different PCL molecular weights have been employed, using acetone and water as solvent and anti-solvent, respectively. The main important thermodynamic and kinetic parameters, such as solubility and interfacial tension of PCL in water-acetone mixtures, are determined and the effect of the process operating conditions on the final particle size distribution is also investigated. Particles produced under different conditions into a Confined Impinging Jets Reactor (CIJR) were characterized by Dynamic Light Scattering, Zeta potential measurements and Scanning Electronic Microscopy. Results clearly show the strong effect of mixing on the particle size distribution and how mixing must be controlled in order to obtain a product with particular characteristics. Eventually the measured thermodynamic and kinetic parameters are used to interpret the obtained experimental data.  相似文献   

20.
A simple kinetic model is proposed for the formation of inorganic nanoparticles in the presence of additives of readily adsorbing organic compounds. Additives and monomers may occupy the same sites on the surface of a growing particle. The maximum sizes and size distribution of formed particles are estimated under the assumption that the surface curvature of a growing particle has equivalent effects on the rate constants of the growth and adsorption. Equations are derived that relate the polydispersity indices for particle mass and radius distributions to the variances of particle radius distribution. The conditions are determined for the formation of virtually monodisperse nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号