首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Co-sublattice anisotropy in Lu2Co17 consists of four competitive contributions from Co atoms at crystallographically different sites in the Th2Ni17-type of crystal structure, which result in the appearance of a spontaneous spin-reorientation transition (SRT) from the easy plane to the easy axis at elevated temperatures. In order to investigate this SRT in detail and to study the influence of Si substitution for Co on the magnetic anisotropy, magnetization measurements were performed on single crystals of Lu2Co17−xSix (x=0−3.4) grown by the Czochralski method. The SRT in Lu2Co17 was found to consist of two second-order spin reorientations, “easy-plane”–“easy-cone” at TSR1≈680 K and “easy-cone”–“easy-axis” at TSR2≈730 K. Upon Si substitution for Co, both SRTs shift toward the lower temperatures in Lu2Co16Si (TSR1≈75 K and TSR2≈130 K) with the further onset of the uniaxial type of magnetic anisotropy in the whole range of magnetic ordering for Lu2Co17−xSix compounds with x>1 due to a weakening of the easy-plane contribution from the Co atoms at the 6g and 12k sites to the total anisotropy.  相似文献   

2.
The C15 Laves phases with composition Nd1−xPrx(Fe0.35Co0.55B0.1)2 (0?x?1) have been synthesized by arc melting and subsequent annealing. The Curie temperature Tc and the saturation magnetizations Ms at 5 and 295 K decrease with increasing Pr content. The linear anisotropic magnetostriction λa=λλ at room temperature for Nd1−xPrx(Fe0.35Co0.55B0.1)2 alloys with 0?x?0.4 initially reaches a negative minimum, then increases and changes its sign with increasing magnetic field H, and the λa for the alloys with x?0.6 is positive and increases as magnetic field H increases.  相似文献   

3.
Remanence, coercivity and maximum energy product (BH)max of Nd16Fe76−xHfxB8 (x=0, 0.1, 0.2) magnets processed under different hydrogenation-disproportionation-desorption-recombination (HDDR) conditions, were studied. Vibrating sample magnetometry results showed that Hf-doped materials develop an important degree of anisotropy, especially for the case of solid-HDDR treatments at 800°C and 850°C, with the largest effect at 850°C. Maximum values of remanence and coercivity were observed for Hf-added samples S-HD at 850°C, and 900°C, respectively. The highest (BH)max value was also observed in S-HD 900°C Hf-added samples. These results are discussed in terms of the expected microstructure of the intermediate HD and final HDDR processed powders.  相似文献   

4.
The Potts-like model is utilized to describe an alloy Gd1−xCx with x=0, 0.025, 0.06, 0.09, and the magnetic and magnetocaloric properties are calculated by Monte Carlo method. The effect of the local distortion of the lattice due to adulterated C atom on the exchange interaction between Gd atoms can be considered. The spontaneous magnetization, specific heat, and magnetic susceptibility are calculated. It is found that the magnetization at low temperature decreases but phase transition temperature from ferromagnetic to paramagnetic increases, as the concentration of the C atom in the system increases. Moreover, the specific heat and the susceptibility exhibit peaks at the transition temperature. For two external magnetic field h/J=0.25 and 10.0, the magnitude of the isothermal magnetic entropy change in binary alloy is more than in pure Gd system. Furthermore, the range of temperature of half peak in the curve of the magnetic entropy change becomes wide and the refrigerant capacity increases in the alloy.  相似文献   

5.
For the HDDR Nd13.5Fe79.5B7 magnetic powders, effects of disproportionation time and hydrogen pressure on the anisotropy were studied during the slow desorption stage. Studies showed that shorter disproportionation times caused the magnetic powders displaying higher anisotropy. With increasing disproportionation times, the degree of crystallographic alignment decreased. This in turn caused a drop in remanence and anisotropic character. Longer disporportionation times have also been correlated to a change in disproportionated microstructure from lamella to columnar. XRD (X-Ray Diffraction) studies showed that except NdH2,α-Fe and Fe2B, no other phases were included in the disproportionation mixture. This elucidated that the strong anisotropy is only related to a lamella disproportionation microstructure, which corresponds to a short disproportionation times. The lamella disproportionation microstructure may remain or inherit the alignment of original Nd2Fe14B grain, and may also be related to the alignment of the newly formed Nd2Fe14B grain. Thus, the anisotropic formation mechanism of ternary magnetic powders accords with “anisotropy-mediating phase” model. If the disproportionation mixture were carried out an optimum hydrogen pressure treatment during the HDDR process, the degree of crystallographic alignment can be further enhanced.  相似文献   

6.
The effects of substitution of Co for Fe on the magnetic and magnetocaloric properties of La0.8Ce0.2Fe11.4−xCoxSi1.6 (0, 0.2, 0.4, 0.6, 0.8 and 1.0) compounds have been investigated. X-ray diffraction shows that all compounds crystallize in the NaZn13-type structure. Magnetic measurements show that the Curie temperature (TC) can be tuned between 184 and 294 K by changing the Co content from 0 to 1. A field-induced methamagnetic transition occurs in samples with x=0, 0.2 and 0.4. The magnetic entropy changes of the compounds have been determined from the isothermal magnetization measurements by using the Maxwell relation.  相似文献   

7.
The thermal expansion of Lu2Fe17−xSix solid solutions has been measured by X-ray powder diffraction. The magnetic ordering in all compounds within the homogeneity range (x3.4) is accompanied by a large spontaneous volume magnetostriction, distributed anisotropically over the principal axes of the hexagonal crystal structure. The volume effect ωs in the ground state reaches 14.7×10−3 in Lu2Fe17 and decreases monotonously to 8.9×10−3 for x=3.4, following the reduction of magnetic moment. Despite a still large ωs, the Invar behavior observed in Lu2Fe17 changes to a positive thermal expansion for x>1 due to an increasing Curie temperature.  相似文献   

8.
Polycrystalline Nd1−xKxMnO3 (x=0.10–0.20) compounds have been prepared in single phase form with Pbnm space group. The magnetic properties were studied by measuring dc magnetization and ac susceptibility. They exhibit paramagnetic to ferromagnetic transition with transition temperature ranging from 116 to 128 K. The magnetization data have been analyzed by using Brillouin function model and by taking into account the ferromagnetic interaction. The effective spin contribution towards ferromagnetic interaction and spin canting angle have been estimated. The spin canting angle is found to decrease with increase in doping. Magneto-caloric effect (MCE) has been studied and the maximum change in entropy was found to be 1.76 J/kg K for 1 T field. Metal–insulator transition and colossal magnetoresistance of the order of 60% for 1 T field have been observed for x=0.20 sample.  相似文献   

9.
Nanocrystalline Nd16Fe76−xTixB8 hard magnetic powders were prepared by mechanical alloying and respective heat treatment at 973–1073 K /30–60 min. The nanocrystalline hard magnetic powders were investigated by the NanoSight Halo LM10TM Nanoparticle Analysis System, AFM, SEM and Mössbauer spectrometry. The nanocrystals have average size of 40 nm and the crystals form agglomerates with an average size of about 180 nm. HaloTM, AFM and SEM techniques are the complementary methods, which give comparable results.  相似文献   

10.
X-ray, neutron diffraction and magnetic susceptibility are reported for FexNi1−xTa2O6 mixed oxides. X-ray refinement indicates homogeneous samples for all the reported concentrations. The neutron-diffraction measurements reveal magnetic structures with double propagation vectors. This system exhibits at least two bicritical points at about x=0.15 and 0.60. For these concentrations, at low temperatures, the system shows the coexistence of two magnetic structures. This bicritical behaviour is interpreted as induced by competition between the different magnetic structures.  相似文献   

11.
Magnetic and optical properties of FexCo3−xO4 thin films grown by sol–gel method have been investigated as the Fe composition (x  ) increases from 0 to 2. X-ray diffraction measurements revealed that the normal- and inverse-spinel phases coexist for 0.76?x?0.930.76?x?0.93. The normal-spinel phase is dominant below x=0.76x=0.76 while the inverse-spinel phase above x=0.93x=0.93. The lattice constant of the inverse-spinel phase is found to be larger than that of the normal-spinel phase. For both phases the lattice constant increases with increasing x. The FexCo3−xO4 films containing the inverse-spinel phase exhibit net magnetization that increases with increasing x  . Conversion electron Mössbauer spectrum measured on the x=0.93x=0.93 sample showed that Fe2+ ions prefer the octahedral sites, indicating the formation of the inverse-spinel phase. Analysis on the measured optical absorption spectra for the samples by spectroscopic ellipsometry indicates a dominance of the normal-spinel phase for low x in which Fe3+ ions mostly occupy the octahedral sites. Observation of a crystal-field transition at 1.6 eV originating from tetrahedral Fe3+ ion confirms the existence of the inverse-spinel phase for high x.  相似文献   

12.
We have prepared iron-oxypnictide SmFeAsO1−xFx by ambient-pressure technique and SmFeAsO1−y by high-pressure technique, and characterized their bulk and local magnetic properties by using SQUID magnetometer and magneto-optical imaging. While the high-pressure samples have densities close to the theoretical value, the ambient-pressure samples have several small voids. Despite these structural differences between the two kinds of samples, they both have superconducting transition temperature above 50 K. In addition, magneto-optical images for both samples show similar kinds of inhomogeneities with large current concentrated in several grains and with small intergranular current. The estimated intragranular currents for both samples are over 105 A/cm2 at low temperatures and low fields.  相似文献   

13.
Clear evidence of ferromagnetic behavior at temperatures >400 K as well as spin polarization of the charge carriers have been observed in Zn1−xMnxO thin films grown on Al2O3 and MgO substrates. The magnetic properties depended on the exact Mn concentration and the growth parameters. In well-characterized single-phase films, the magnetic moment is 4.8 μB/Mn at 350 K, the highest moment yet reported for any Mn doped magnetic semiconductor. Anomalous Hall effect shows that the charge carriers (electrons) are spin-polarized and participate in the observed ferromagnetic behavior.  相似文献   

14.
The paper represents a detailed insight into the correlation between changes of the phase composition of crystalline YbxZr1−xO2−x/2 solid solutions and their structural, electrical, mechanical and optical properties. Particularly, the effect of the crystal growth conditions and stabilizer amount in the range of 1.5–13.8 mol% of Yb2O3 are studied in terms of Rietveld analysis of powder X-ray diffraction data, electrical conductivity measured by impedance spectroscopy, absorption coefficient and refractive index measurements, Vickers microhardness (classical technique) as well as the plastic microhardness and effective elastic modulus (DSI—depth-sensing indentation technique). Potential applications of the investigated systems are discussed in view of the results obtained.  相似文献   

15.
The electronic structure of Mg0.95Mn0.05Fe2−2xTi2xO4 (0x0.8) compound is investigated using near edge X-ray absorption fine structure, (NEXAFS) spectroscopy measurements, carried out at O K, Fe and Ti L3,2-edges at room temperature. The O K-edge spectra indicate that the Fe 3d orbitals have been considerably modified and a new spectral feature start dominating in the pre-edge region at higher Ti doping. The Fe 2p NEXAFS spectra exhibit a mixed valent Fe2+/Fe3+ states apart from the conversion of Fe3+ to Fe2+ with the substitution of Ti ions. The Ti L3,2-edge spectra indicate that Ti ions remain unchanged at 4+ state. These variations in the host electronic structure due to Ti substitution are consistent with the dielectric and transport properties of the material.  相似文献   

16.
Nd3+ crystal-field excitations in Nd1−xCaxMnO3 (x=0.025, 0.05 and 0.1) single crystals are studied via infrared transmission as a function of temperature and external magnetic field. We report excitations associated with Nd3+ sites as detected in NdMnO3 and excitations due to Ca doping. The latter reveal phase separation between the usual A-type antiferromagnetic states and the insulating canted (ferromagnetic) spin states in the vicinity of doped Ca2+ ions. Both Nd3+ crystal-field levels could be described using calculated parameters for NdMnO3. Also, while oxygen stoichiometry and coherent Jahn–Teller distortions seem not to be affected by Ca doping, increased absorption bandwidths characterize the doped crystals.  相似文献   

17.
Nanocrystalline Nd12Fe82B6 (atomic ratio) alloy powders with Nd2Fe14B/α-Fe two-phase structure were prepared by HDDR combined with mechanical milling. The as-cast Nd12Fe82B6 alloy was disproportionated via ball milling in hydrogen, and desorption–recombination was then performed. The phase and structural change due to both the milling in hydrogen and the subsequent desorption–recombination treatment was characterized by X-ray diffraction (XRD). The desorption–recombination behavior of the as-disproportionated alloy was investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The morphology and microstructure of the final alloy powders subject to desorption–recombination treatment were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. The results showed that, by milling in hydrogen for 20 h, the matrix Nd2Fe14B phase of the alloy was fully disproportionated into a nano-structured mixture of Nd2H5, Fe2B, and α-Fe phases with average size of about 8 nm, and that a subsequent desorption–recombination treatment at 760 °C for 30 min led to the formation of Nd2Fe14B/α-Fe two-phase nanocomposite powders with average crystallite size of 30 nm. The remanence Br, coercivity Hc, and maximum energy product (BH)max of such nanocrystalline Nd12Fe82B6 alloy powders achieved 0.73 T, 610 kA/m, and 110.8 kJ/m3, respectively.  相似文献   

18.
The effects of an electric field on the interband transitions in InxGa1−xAs/InyAl1−yAs coupled step quantum wells have been investigated both experimentally and theoretically. A InxGa1−xAs/InyAl1−yAs coupled step quantum well sample consisted of the two sets of a 50 Å In0.53Ga0.47As shallow quantum well and a 50 Å In0.65Ga0.35As deep step quantum well bounded by two thick In0.52Al0.48As barriers separated by a 30 Å In0.52Al0.48As embedded potential barrier. The Stark shift of the interband transition energy in the InxGa1−xAs/InyAl1−yAs coupled step quantum well is larger than that of the single quantum well, and the oscillator strength in the InxGa1−xAs/InyAl1−yAs coupled step quantum well is larger than that in a coupled rectangular quantum well. These results indicate that InxGa1−xAs/InyAl1−yAs coupled step quantum wells hold promise for potential applications in optoelectron devices, such as tunable lasers.  相似文献   

19.
In this paper, a Monte Carlo Simulation (MCS) has been used to study the quadruple perovskite oxide CaCu3Fe2Os2O12. The system has been conceived as a mixture of atoms with the magnetic moments Cu (±1/2), Fe (±5/2, ±3/2, ±1/2) and Os (±3/2, ±1/2). Phase diagrams depending on reduced exchange couplings and reduced crystal fields have been established. A stable ferromagnetic phase at the ground state has been found. Investigation of magnetic properties has been focused on the finite size analysis of magnetization and magnetic susceptibility according to reduced temperatures. Critical temperature has been calculated through simulation and the compound has been found to belong in the three-dimensional Ising model universality class.  相似文献   

20.
Full-potential linearized augmented plane wave method (FP-LAPW) within density functional theory has been used to calculate structural, electronic and optical properties of Ca1−xSrxS, an alkali earth chalcogenide, with varying compositional parameter x in the range 0<x<1. Whereas the structural properties are discussed in terms of charge transfer between the two cations, calculated electronic band structure and density of states have been analyzed in terms of contribution from the S p, Ca d and Sr d states. Furthermore, we have calculated some optical properties such as real and imaginary parts of dielectric constant, ε(ω), and the calculated results have been discussed in comparison with the existing experimental data and other theoretical calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号