首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyelectrolyte multilayer thin films were prepared by an alternate deposition of poly(allylamine hydrochloride) (PAH) and anionic polysaccharides {carboxymethylcellulose (CMC) and alginic acid (AGA)} on the surface of a gold (Au) disk electrode, and the binding of ferricyanide [Fe(CN)(6)](3)(-) and hexaammine ruthenium ions [Ru(NH(3))(6)](3+) to the films was evaluated. Poly(acrylic acid) (PAA) was also employed as a reference polyanion bearing carboxylate side chains. A quartz-crystal microbalance study showed that PAH-CMC and PAH-AGA multilayer films grow exponentially as the number of depositions increases. The thicknesses of five bilayers of (PAH-CMC)(5) and (PAH-AGA)(5) films were estimated to be 150 +/- 20 and 90 +/- 15 nm, respectively, in the dry state. The PAH/polysaccharide multilayer film-coated Au electrodes exhibited a redox response to the [Fe(CN)(6)](3)(-) ion dissolved in solution, irrespective of the sign of the surface charge of the film, suggesting the high permeability of the films to the [Fe(CN)(6)](3)(-) ion. In contrast, the PAH-PAA film-coated Au electrodes exhibited a redox response only when the outermost surface of the film was covered with a positively charged PAH layer. However, the permeation of the [Ru(NH(3))(6)](3+) cation was severely suppressed for all of the multilayer films. It was possible to confine the [Fe(CN)(6)](3)(-) ion in the films by immersing the film-coated electrodes in a 1 mM [Fe(CN)(6)](3)(-) solution for 15 min. Thus, the [Fe(CN)(6)](3)(-)-confined electrodes exhibited a cyclic voltammetric response in the [Fe(CN)(6)](3)(-) ion-free buffer solution. The loading of the [Fe(CN)(6)](3)(-) ion in the films was higher when the surface charge of the film was positive and increased with increasing film thickness. It was also found that the [Fe(CN)(6)](3)(-) ion confined in the films serves as an electrocatalyst that oxidizes ascorbic acid in solution.  相似文献   

2.
The identification of strategies to assemble nanostructured films with engineered properties on solid supports can lead to the development of innovative functional materials. In particular, the self-assembly of electroactive multilayers from simple molecular building blocks on metallic electrodes can offer the opportunity to regulate the exchange of electrons between the underlying substrate and solution species. In this context, we designed an experimental protocol to prepare electroactive films from bipyridinium bisthiols. Specifically, we found that a compound incorporating two bipyridinium dications at its core and terminal thiol groups self-assembles into remarkably stable multilayers on polycrystalline gold. The surface coverage of the resulting films can be regulated by adjusting the exposure time of the gold substrate to the bipyridinium solution. Control experiments with appropriate model compounds demonstrate that both bipyridinium dications as well as both thiol groups must be present in the molecular skeleton to encourage multilayer growth. The resulting films transport electrons efficiently from the electrode surface to the film/solution interface. Indeed, they mediate the reduction of Ru(NH(3))(6)(3+) in the electrolyte solution but prevent the back oxidation of the resulting Ru(NH(3))(6)(2+). Furthermore, these polycationic bipyridinium films capture electrostatically Fe(CN)(6)(4-) tetraanions, which can also be exploited to transport electrons across the interfacial assembly. In fact, electrons can travel through the bipyridnium(2+/1+) couples to redox probes in solution and then back to the electrode through the Fe(CN)(6)(4/3-) couples. Thus, our original approach to self-assembling multilayers can produce stable electroactive films with unique electron transport properties, which can be regulated with a careful choice of the anionic components.  相似文献   

3.
Silicon carbide (SiC) films have been used frequently for high-frequency and powder devices but have seldom been applied as the electrode material. In this paper, we have investigated the electrochemical properties of the nanocrystalline 3C-SiC film in detail. A film with grain sizes of 5 to 20 nm shows a surface roughness of about 30 nm. The resistivity of the film is in the range of 3.5-6.2 kΩ cm. In 0.1 M H(2)SO(4) solution, the film has a double-layer capacitance of 30-35 μF cm(-2) and a potential window of 3.0 V if an absolute current density of 0.1 mA cm(-2) is defined as the threshold. Its electrochemical activity was examined by using redox probes of [Ru(NH(3))(6)](2+/3+) and [Fe(CN)(6)](3-/4-) in aqueous solutions and by using redox probes of quinone and ferrocene in nonaqueous solutions. Diffusion-controlled, quasi-reversible electrode processes were achieved in four cases. The surface chemistry of the nanocrystalline 3C-SiC film was studied by electrochemical grafting with 4-nitrobenzenediazonium salts. The grafting was confirmed by time-of-flight secondary ion mass spectroscopy. All these results confirm that the nanocrystalline 3C-SiC film is promising for use as an electrode material.  相似文献   

4.
The deposition of Au and Ag, locally and from bulk solution, on poly(3,4-ethylenedioxythiophene) (PEDOT) was studied. Specifically, PEDOT was electrochemically polymerized onto a glassy carbon (GC) electrode and used for bulk deposition of Au and Ag from their respective ions dissolved in the solution as well as for the local deposition of these metals using scanning electrochemical microscopy (SECM). These two sets of experiments were utilized to investigate the difference between Au and Ag electrochemical deposition on PEDOT. In particular, SECM experiments, which were conducted by the controlled anodic dissolution of Au and Ag microelectrodes close to GC/PEDOT, probed the effect of different PEDOT oxidation states on local deposition. The current-time transients recorded during the deposition, combined with scanning electron microscopy and EDX analysis provided insight into the reduction processes. AuCl(4)(-) and Ag(+) ions were electrochemically reduced at a potential equal to and more negative than the ions redox potentials (0.4 and 0.2 V, respectively) and more positive than -0.7 V, where the PEDOT starts transforming into the reduced, i.e. insulating, state. We found that the electroreduction of Ag(+) ions was diffusion-controlled and the PEDOT film served as a simple conductor. On the other hand, the reduction of AuCl(4)(-) ions was enhanced on GC/PEDOT as compared with bare GC, indicating that PEDOT catalyzes the reduction of AuCl(4)(-) to Au.  相似文献   

5.
Electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) are used to monitor changes in the ionization of monolayers of 11-mercaptoundecanoic acid. When using an anionic redox probe, Fe(CN)6(-4), the charge-transfer resistance of the 11-mercaptoundecanoic acid monolayer-modified interface increases in a sigmoidal fashion as the solution is made basic. The opposite effect is observed when using a cationic redox probe. The inflection points of these two titration curves, however, differ when using the different redox probes. This result is taken as being characteristic of the influence that applied potential has on the ionization of the monolayer. The role of substrate potential on the ionization of the monolayer is further investigated by SECM. The SECM measurement monitors the concentration of Ru(NH3)6(+3) as the potential of the substrate is varied about the potential of zero charge. For monolayers of 11-mercaptoundecanoic acid in solutions buffered near the pKa of the terminal carboxylic acid, potential excursions positive of the PZC cause an increase in the concentration of Ru(NH3)6(+3) local to the interface, and potential excursions negative of the PZC cause a decrease in the local concentration of Ru(NH3)6(+3). Similar experiments conducted with an interface modified with 11-undecanethiol had no impact on the local concentration of Ru(NH3)6(+3). These results are interpreted in terms of the influence that applied potential has on the pH of the solution local to the interface and the impact that this has on the ionization of the monolayer.  相似文献   

6.
Polyions complex 2C12N+ PSS- was prepared by reacting poly(sodium styrenesulfonate) (Na+ PSS-) with didodecyldimethylammonium bromide (2Cl2N+ Br-). Stable thin films made from 2C12N+ PSS- with incorporated redox protein hemoglobin (Hb) on pyrolytic graphite (PG) electrodes were then characterized by electrochemistry and other techniques. Cyclic voltammetry (CV) of Hb-2C12N+ PSS- films showed a pair of well-defined and nearly reversible peaks for HbFe(III)/Fe(II) couple at about -0.17 V vs. saturated calomel electrode (SCE) in pH 5.5 buffers. The electron transfer rate between Hb and PG electrode was greatly facilitated in microenvironment of 2C12N+ PSS- films. Positions of Soret absorption band suggest that Hb keeps its secondary structure similar to its native state in 2C12N+ PSS- films at the medium pH. The results of X-ray diffraction and differential scanning calorimetry (DSC) suggest synthesized lipid 2C12N+ PSS- films have an ordered bilayer structure intercalated between PSS- polyion layers, and the incorporated Hb expands the layer spacing of the films. HbFe(I), a highly reduced form of Hb, might also be produced in these films at about -1.09 V, and could be used to catalytically reduce organohalide pollutants.  相似文献   

7.
The use of scanning electrochemical microscopy (SECM) to evaluate the apparent diffusion coefficient, Dapp, of redox-active species in ultrathin Nafion films is described. In this technique, an ultramicroelectrode (UME) tip, positioned close to a film on a macroscopic electrode, is used to oxidize (or reduce) a species in bulk solution, causing the tip-generated oxidant (reductant) to diffuse to the film/solution interface. The oxidation (reduction) of film-confined species regenerates the reductant (oxidant) in solution, leading to feedback to the UME. A numerical model is developed that allows Dapp to be determined. For these studies, ultrathin films of Nafion were prepared using the Langmuir-Schaefer (LS) technique and loaded with an electroactive species, either the ferrocene derivative ferrocenyltrimethylammonium cation, FA+, or tris(2,2'-bipyridyl)ruthenium(II), Ru(bpy)32+. The morphology and the thickness of the Nafion LS films (1.5 +/- 0.2 nm per layer deposited) were evaluated using atomic force microscopy (AFM). For comparison with the SECM measurements, cyclic voltammetry (CV) was employed to evaluate the concentration of electroactive species within the Nafion LS films and to determine Dapp. The latter was found to be essentially invariant with film thickness, but the value for Ru(bpy)32+ was 1 order of magnitude larger than for FA+. CV and SECM measurements yield different values of Dapp, and the underlying reasons are discussed. In general, the Dapp values for these films are considerably smaller than for recast Nafion films, which can be attributed to the compactness of Nafion LS films. Nonetheless, the ultrathin nature of the films leads to fast response times, and we thus expect that these modified electrodes could find applications in sensing, electroanalysis, and electrocatalysis.  相似文献   

8.
The monoolein-based liquid crystalline cubic phase was used as the matrix to incorporate redox enzymes--glucose (GOx), pyranose (PyOx) oxidases and laccase. Thin layer of the cubic phase embedding GOx or PyOx activated glucose oxidation in the presence and absence of appropriate mediators. The electrodes exhibited unchanged voltammetric response to glucose for not less than six days. The potentials and ratio of catalytic to diffusion currents could be modified by choosing appropriate electroactive probes as mediators. Ferrocenecarboxylic acid and Ru(NH3)6(2+) provided contact between the electrode and the enzyme. The sensitivity to glucose for glucose oxidase was 0.4+/-0.05, 11+/-3.1 microA/cm2/mM without mediator and with ferrocenecarboxylic acid respectively and 0.9+/-0.06, 31+/-5.6 microA/cm2/mM for pyranose oxidase without and with mediator. The system based on glucose oxidase and Ru(NH3)6(2+) as mediator was found useful due to the most negative potential of the process. The catalyses of oxygen reduction by two laccases: Cerrena unicolor and Trametes hirsuta embedded in the cubic phase together with 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonate (ABTS) as the mediator were found efficient and the reduction potential was positive enough to be considered in the application of lyotropic liquid crystals as a material for biofuel cells.  相似文献   

9.
In this paper, we report a novel electrochemical doping method for conducting polymer films based on bipolar electrochemistry. The electrochemical doping of conducting polymers such as poly(3-methylthiophene) (PMT), poly(3,4-ethylenedioxythiophene) (PEDOT), and poly(aniline) (PANI) on a bipolar electrode having a potential gradient on its surface successfully created gradually doped materials. In the case of PEDOT film, the color change at the anodic side was also observed to be gradually transparent. PANI film treated by the bipolar doping gave a multicolored gradation across the film. The results of UV-vis and energy dispersive X-ray analyses for the doped films supported the distribution of dopants in the polymer films reflecting the potential gradient on the bipolar electrode. Furthermore, the reversibility of the bipolar doping of the PMT film was demonstrated by a spectroelectrochemical investigation.  相似文献   

10.
The influence of a surface potential gradient on the location and extent of electrochemical reactions was examined using a scanning electrochemical microscope. A linear potential gradient was imposed on the surface of a platinum-coated indium tin oxide electrode by applying two different potential values at the edges of the electrode. The applied potentials were used to control the location and extent of several electrochemical reactions, including the oxidation of Ru(NH3)6(2+), the oxidation of H2, and the oxidation of H2 in the presence of adsorbed CO. Scanning electrochemical mapping of these reactions was achieved by probing the feedback current associated with the oxidation products. The oxidation of Ru(NH3)6(2+) occurred at locations where the applied potential was positive of the formal potential of the Ru(NH3)6(2+/3+) redox couple. The position of this reaction on the surface could be spatially translated by manipulating the terminal potentials. The rate of hydrogen oxidation on the platinum-coated electrode varied spatially in the presence of a potential gradient and correlated with the nature of the electrode surface. High oxidation rates occurred at low potentials, with decreasing rates observed as the potential increased to values where platinum oxides formed. The extent of oxide formation versus position was confirmed with in-situ ellipsometry mapping. In the presence of adsorbed carbon monoxide, a potential gradient created a localized region of high activity for hydrogen oxidation at potentials between where carbon monoxide was adsorbed and platinum oxides formed. The position of this localized region of activity could be readily translated along the surface by changing the terminal potential values. The ability to manipulate electrochemical reactions spatially on a surface has potential application in microscale analytical devices as well as in the discovery and analysis of electrocatalytic systems.  相似文献   

11.
[Ru(II)L(NH(3))(4)(pz)Ru(II)(bpy)(2)(NO)](PF(6))(5) (L is NH(3), py, or 4-acpy) was prepared with good yields in a straightforward way by mixing an equimolar ratio of cis-[Ru(NO(2))(bpy)(2)(NO)](PF(6))(2), sodium azide (NaN(3)), and trans-[RuL(NH(3))(4)(pz)] (PF(6))(2) in acetone. These binuclear compounds display nu(NO) at ca. 1945 cm(-)(1), indicating that the nitrosyl group exhibits a sufficiently high degree of nitrosonium ion (NO(+)). The electronic spectrum of the [Ru(II)L(NH(3))(4)(pz)Ru(II)(bpy)(2)(NO)](5+) complex in aqueous solution displays the bands in the ultraviolet and visible regions typical of intraligand and metal-to-ligand charge transfers, respectively. Cyclic voltammograms of the binuclear complexes in acetonitrile give evidence of three one-electron redox processes consisting of one oxidation due to the Ru(2+/3+) redox couple and two reductions concerning the nitrosyl ligand. Flash photolysis of the [Ru(II)L(NH(3))(4)(pz)Ru(II)(bpy)(2)(NO)](5+) complex is capable of releasing nitric oxide (NO) upon irradiation at 355 and 532 nm. NO production was detected and quantified by an amperometric technique with a selective electrode (NOmeter). The irradiation at 532 nm leads to NO release as a consequence of a photoinduced electron transfer. All species exhibit similar photochemical behavior, a feature that makes their study extremely important for their future application in the upgrade of photodynamic therapy in living organisms.  相似文献   

12.
We illustrate in this paper the successful combination of the direct and feedback mode of scanning electrochemical microscopy (SECM) for the writing of oligonucleotide patterns on thin gold films alongside the imaging of DNA hybridization. The patterning process was achieved using the direct mode of SECM, where the electrical field established between the SECM tip and the gold interface was used to drive the local deposition of micrometre sized polypyrrole spots to which a 15(mer) oligonucleotide (ODN) strand was linked covalently. Imaging of the deposited polypyrrole-ODNs was achieved by means of the feedback mode of SECM using Ru(NH(3))(6)(3+) as the mediator. The detection of the hybridization reaction of the ODN probes with their biotinylated complementary strands using SECM was possible after subsequent reactions with streptavidin and biotinylated horseradish peroxidase (HRP). The HRP-biocatalyzed oxidation of 4-chloro-1-naphthol (1) in the presence of H(2)O(2), and the precipitation of the insoluble product 4-chloro-1-naphthon (2) on the hybridized areas on the gold film caused a local alteration of conductivity. Such a change in conductivity was sensitively detected by the SECM tip and allowed imaging of DNA arrays in a fast and straightforward way.  相似文献   

13.
The facile deposition of para-substituted aryl films onto indium-tin oxide (ITO) electrodes by the electrochemical reduction of aryl diazonium salts in acetonitrile is reported. For the deposition conditions used in this report, the aryl film thicknesses are on the order of 1-6 nm, suggesting a multilayer structure. Regardless of the functional group on the aryl diazonium cation, (NO(2), CO(2)H, or fluorene) the electrodeposition behavior onto ITO electrodes is similar to that seen on other electrode materials. XPS and UV-vis data support the introduction of organic functional surface groups to ITO. The blocking behavior of the aryl films on ITO toward the Ru(NH(3))(6)(3+/2+) redox couple is in agreement with electron transfer through conjugated organic layers. The facile preparation of patterned aryl films with regular-spaced 700 nm voids on ITO is also described. Atomic force microscopy and scanning surface potential microscopy on patterned NO(2) aryl films are used to assess the molecular structure and orientation. A 100 mV decrease in the contact potential over NO(2) aryl films relative to bare ITO suggests that the aryl films are loosely structured as deposited with the NO(2) groups oriented at a small angle away from the ITO surface.  相似文献   

14.
A combination of electrochemistry and luminescence methods was exploited to obtain information on the electrochemical activity and homogeneity of Nafion Langmuir-Blodgett films. The redox behavior of the Ru(bpy)3(2+) probe incorporated in the Nafion film was monitored by epifluorescence microscopy. The photoluminescent images, recorded by a charge-coupled device (CCD) camera, reflect the distribution of the probe in the film, which resulted as very uniform, particularly in comparison with spin-coated films. Apparent diffusion coefficients (Dapp) determined by cyclic voltammetry for films of less than 10 layers are in the range of 1 x 10(-12) to 8 x 10(-12) cm(2) s(-1), that is, 2 orders of magnitude lower than values reported in the literature for spin-coated Nafion films. The application to the electrode of a potential able to oxidize the luminescent Ru(bpy)3(2+) to the nonluminescent Ru(bpy)3(3+) switched off the photoluminescence with a response time that for the LB films was much shorter than that for the spin-coated ones. Experimental evidence and calculations indicate that lowering of the film thickness down to the nanometric level is very effective in shortening the switching time, notwithstanding the lowering of the Dapp value in LB films.  相似文献   

15.
The potentiometric response of electrodes coated with polypyrrole or poly(N-methylpyrrole) films with different doping anions was studied in solutions containing the redox couples: Fe(CN)63−/4−, Ru(NH3)63+/2+ and Fe(Ill)/Fe(II). The stable potential measured with the electrodes was the potential of the redox couple. The response time was instant for polypyrrole doped with dodecylsulphate ions, PPy(DS) and slow for the polymers doped with mobile anions. On the basis of electrochemical measurements and chemical analysis by EDAX spectroscopy it was found that with the PPy(DS) electrode the potentiometric response was of the ‘metallic’ type, with no change in the oxidation state of the bulk polymer. With the other polymer systems studied reduction or oxidation of the polymer bulk took place when it was in contact with a redox couple in the solution.  相似文献   

16.
Scanning electrochemical microscopy (SECM) was used to investigate the effect of ion bombardment on thin films of the conducting polymers poly[3-ethoxy-thiophene] (PEOT) and poly[ethylenedioxy-thiophene] (PEDT). Bombardment with Ar+-ions converts the topmost 30 nm thick layer to an essentially insulating material. SECM approach curves as well as two dimensional scans prove the existence of regions of different conductivity within the irradiated regions that did not show a significant dependence on ion dosage. PEDT layers patterned by ion bombardment through microscopic masks are investigated as prototypes of miniaturized printed circuit boards that can be formed by galvanic copper deposition onto conducting PEDT. Defects in conducting polymer patterns were analyzed by SECM imaging before any deposition of copper. Appropriate representations of SECM images for the evaluation of this technologically important question are discussed.  相似文献   

17.
Scanning electrochemical microscopy (SECM) was used to investigate the effect of ion bombardment on thin films of the conducting polymers poly[3-ethoxy-thiophene] (PEOT) and poly[ethylenedioxy-thiophene] (PEDT). Bombardment with Ar+-ions converts the topmost 30 nm thick layer to an essentially insulating material. SECM approach curves as well as two dimensional scans prove the existence of regions of different conductivity within the irradiated regions that did not show a significant dependence on ion dosage. PEDT layers patterned by ion bombardment through microscopic masks are investigated as prototypes of miniaturized printed circuit boards that can be formed by galvanic copper deposition onto conducting PEDT. Defects in conducting polymer patterns were analyzed by SECM imaging before any deposition of copper. Appropriate representations of SECM images for the evaluation of this technologically important question are discussed.  相似文献   

18.
A new approach based on measuring the change of the open-circuit potential (OCP) of a hanging mercury drop electrode (HMDE), modified with alkanethiols of different chain length conducted in a solution containing a mixture of Ru(NH3)6(2+) and Ru(NH3)6(3+) is used for studying electron transfer across the monolayer. Following the time dependence of the OCP allowed the extraction of the kinetic parameters, such as the charge transfer resistance (R(ct)) and the electron transfer rate constant (k(et)), for different alkanethiol monolayers. An electron tunneling coefficient, beta, of 0.9 A(-1) was calculated for the monolayers on Hg.  相似文献   

19.
A unique guest-guest ion exchange method was developed for preparing a thin film of a nano-layered K(4)Nb(6)O(17).3H(2)O that possesses both (1) optical transparency and (2) ion-exchangeability under ambient conditions without calcination at high temperature. An optically transparent Ru(bpy)(3)(2+)-K(4)Nb(6)O(17) hybrid thin film, a photoresponsive electrode, was successfully prepared by the guest-guest exchange method by use of the intercalation compound MV(2+)-K(4)Nb(6)O(17) as a precursor. The optically transparent Ru(bpy)(3)(2+)-K(4)Nb(6)O(17) hybrid thin films have been characterized by X-ray diffraction, SEM, AFM, IR, and UV spectroscopies, as well as elemental analysis. The electrochemical behavior of the ITO/Ru(bpy)(3)(2+)-K(4)Nb(6)O(17) hybrid thin film electrode was studied; it also exhibits swift photoresponse in the visible region.  相似文献   

20.
Scanning electrochemical microscopy (SECM) was employed for sensitive detection of single base mismatches (SBMs) in a sandwiched dsDNA. Ferrocenecarboxylic acid (Fc), covalently conjugated to the dsDNA, was oxidized to Fc+ via the DNA‐mediated charge transfer from the underlying gold substrate, and reduced back to Fc by SECM tip generated ferrocyanide. The electrocatalytic oxidation of SECM tip‐generated ferrocyanide was sensitive to presence, as well as the type of SBMs. Apparent standard rate constants (k0app) values for different SBMs, both near the electrode surface and far from it, were evaluated by SECM. The method can detect SBMs independent of their position in dsDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号