首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The combinatorial and topologic analysis (the TOPOS 4.0 program package, the coordination sequences method) is carried out for silicates LiY[7]SiO4 (a synthetic phase (SIN), space group P21/b) and LiTR[6]SiO4 (TR = Y, Sc, Tm; the olivine structure type (OLI), space group Pnma). The framework of these silicates is built of polyhedral structural units YO7 + SiO4 and YO6(ScO6, TmO6) + SiO4, respectively. The framework structures TRTO4, built of Y,O- and Si,O-polyhedra in SIN and OLI, respectively, are represented as three-dimensional (3D) Y,Si-nets with distal oxygen atoms. The crystal-forming 2D Y,Si-net is the four-nodal net Y(1) (43333) + Y(2) (4334334) + Si(1) (434) + Si(2) (3343) for SIN and the two-nodal net Y 443333 + Si 4433 for OLI. In the 2D Y,Si, nets, equivalent chains of four-nodal precursor clusters Y-Si-Y-Si with three shared bonds are identified. In the dimorphic crystals structures of LiTRTO4, polyhedral precursor clusters Li2TR2T2 are linked into a ring with two Li atoms lying one above the other below the center of the ring, thus retaining the center of symmetry\(\bar 1\). Precursor clusters Li2TR2T2 through the matrix self-assembly mechanism control the evolution of high-level crystal-forming clusters. Cluster coordination numbers in layers are equal to six.  相似文献   

2.
Geometric and topological analysis of all known types of K,TR germanates (TR = La-Lu, Y, Sc, In) is carried out with the use of computer techniques (the TOPOS 4.0 program package). Framework structures are represented as three-dimensional (3D) K,TR,Ge networks (graphs) with oxygen atoms removed. The following crystal-forming 2D TR,Ge networks are determined: for K2Nd4Ge4O13(OH)4, this is TR 4 3 3 4 3 3 + T 4 3 4 3; for K2YbGe4O10(OH), this is TR 6 6 3 6 + T 1 6 8 6 + T 2 3 6 8; for K2Sc2Ge2O7(OH)2, this is TR 6 4 6 4 + T 6 4 6; and for KScGe2O6, TR 6 6 3 6 3 4 + T 1 6 3 6 + T 2 6 4 3. The full 3D reconstruction of the self-assembly mechanism of crystal structures is performed as follows: precursor cluster—primary chain—microlayer-microframework (supraprecursor). In K2Nd4Ge4O13(OH)4, K2Sc2Ge2O7(OH)2, and KScGe2O6, an invariant type of cyclic six-polyhedral precursor cluster is identified; this precursor clusters is built of TR octahedra, which are stabilized by atoms K. For K2Nd4Ge4O13(OH)4, the type of cyclic four-polyhedral precursor cluster of tetrahedron-linked TR octatopes is identified. The cluster coordination number in a layer is six (the maximum possible value) only for anhydrous germanate KScGe2O6 (an analogue of pyroxene, PYR); in the other OH-containing germanates, this number is four. The mechanism of formation of Ge radicals in the form of groups Ge2O7 and Ge4O13, a chain GeO3, and a tubular assembly of linked cyclic groups Ge8O20 is considered.  相似文献   

3.
<正>1 X-ray crystallography Suitable single crystal of 2 was sealed in a thin-walled glass capillary, and data collection was performed at 293(2) K on a Bruker SMART diffractometer with graphite-monochromated Mo Kα radiation(λ = 0.71073 ). Suitable single crystals of 3and 4 were mounted under nitrogen atmosphere on a glass fiber, and data collection was performed at 133(2) K on a Bruker APEX2 diffractometer with graphite-monochromated Mo Kα radiation(λ = 0.71073 ). The SMART program package was used to determine the unit cell parameters. The absorption correction was applied using SADABS. The structures were solved  相似文献   

4.
Reactions of ClMe2Si–Z–SiMe2Cl (Z = SiMe2 (1a), CH2 (1c), O (1e)) with Li2E (E = S, Se) yielded eight-membered ring compounds (SiMe2ZSiMe2E)2 (3ad) as well as acyclic oligomers (SiMe2ZSiMe2E)x of different chain lengths. If 1:1 molar mixtures of 1a, 1c or 1e and a diorganodichlorosilane, -germane or -stannane (R2MCl2) are reacted with Li2E (E = S, Se, Te), six-membered ring compounds Z(SiMe2E)2MR2 (4a7g) are formed exclusively. Five-membered rings Z2(SiMe2)2E (Z = SiMe2 (8ac), CH2 (9ac); E = S, Se, Te) are obtained starting from the tetrasilane ClMe2Si–(SiMe2)2–SiMe2Cl (1b) or the disilylethane ClMe2Si–(CH2)2–SiMe2Cl (1d) by treatment with Li2E. All products were characterized by multinuclear NMR spectroscopy (1H, 13C, 29Si, 119Sn, 77Se, 125Te, including coupling constants) and the effects of the different ring sizes towards NMR chemical shifts are discussed.  相似文献   

5.
An overview of the dynamical processes involving the hydrido ligand in triosmium and triruthenium carbonyl clusters is presented. The relationship between the mechanisms of hydride motions and the other ligands in the cluster are discussed for mono- di- and trihydrido-clusters. In addition, the reactivity of the electron deficient 46e? cluster, (μ-H)(μ32-C9H5N-4-CHO)Os3(CO)9 (1) with hydrogen is reported. The reaction gives two isomeric trihydrido clusters, H(μ-H)232-C9H5N-4-CHO)Os3(CO)8 (2) and (μ-H)332-C9H5N-4-CHO)Os3(CO)8 (2′) in low yield along with trace amounts of other hydrido clusters. Reaction of the inseparable mixture of 2 and 2′ with triphenylphosphine at ambient temperatures gives two related addition products H(μ-H)2(μ-η2-C9H5N-4-CHO)Os3(CO)8PPh3 (3) and (μ-H)3(μ-η2-C9H5N-4-CHO)Os3(CO)8PPh3 (3′) in a 5:1 ratio. These results contrast with the previously reported trihydrido-derivatives of triosmium μ32-imidoyl clusters where only analogues of 2 and 3 are obtained. Clusters 2 and 2′ are rigid on the NMR time scale while 3 exhibits dynamical behavior in the temperature range of ?50 to +25 °C. Cluster 3′ is stereochemically rigid in this temperature range. The dynamical behavior of 3 involves the exchange of the terminal and bridging hydrides coupled with tripodal motion of the phosphine substituted osmium atom, a process virtually identical to previously reported trihydrides of the μ32-imidoyl triosmium clusters.  相似文献   

6.
The reaction of R3M (M=Ga, In) with HESiR′3 (E=O, S; R′3=Ph3, iPr3, Et3, tBuMe2) leads to the formation of (Me2GaOSiPh3)2 (1); (Me2GaOSitBuMe2)2 (2); (Me2GaOSiEt3)2 (3); (Me2InOSiPh3)2 (4); (Me2InOSitBuMe2)2 (5); (Me2InOSiEt3)2 (6); (Me2GaSSiPh3)2 (7); (Et2GaSSiPh3)2 (8); (Me2GaSSiiPr3)2 (9); (Et2GaSSiiPr3)2 (10); (Me2InSSiPh3)3 (11); (Me2InSSiiPr3)n (12), in high yields at room temperature. The compounds have been characterized by multinuclear NMR and in most cases by X-ray crystallography. The molecular structures of (1), (4), (7) and (8) have been determined. Compounds (3), (6) and (10) are liquids at room temperature. In the solid state, (1), (4), (7) and (9) are dimers with central core of the dimer being composed of a M2E2 four-membered ring. VT-NMR studies of (7) show facile redistribution between four- and six-membered rings in solution. The thermal decomposition of (1)(12) was examined by TGA and range from 200 to 350°C. Bulk pyrolysis of (1) and (2) led to the formation of Ga2O3; (4) and (5) In metal; (7)(10) GaS and (11)(12) InS powders, respectively.   相似文献   

7.
Four 3d-4f heterometallic complexes, [CuⅡ LnⅢ (bpt) 2 (NO 3 ) 3 (MeOH)] (Ln = Gd, 1; Dy, 2; bptH = 3,5-bis(pyrid-2-yl)-1,2,4- triazole), [CuⅡ 2 LnⅢ 2 (μ-OH) 2 (bpt) 4 Cl 4 (H 2 O) 2 ]·6H 2 O (Ln = Gd, 3; Dy, 4), have been synthesized under solvothermal conditions. X-ray structural analyses reveal that 1 and 2 are isostructural while 3 and 4 are isostructural. In each complex, the copper and gadolinium or dysprosium ions are linked by two triazolate bridges and form a CuⅡ -LnⅢ dinuclear unit. The intramolecular Cu-Ln distances are 4.542, 4.525, 4.545 and 4.538 for 1, 2, 3 and 4, respectively. Two dinuclear CuLn units are bridged by two OH- groups into the zig-zag tetranuclear {CuⅡ 2 LnⅢ 2 } structures with the Ln(Ⅲ) Ln(Ⅲ) distances of 3.742 and 3.684 for 3 and 4, respectively. Magnetic studies show that the antiferromagnetic CuⅡ-LnⅢ interactions occur in 1 (J CuGd = 0.21 cm-1 ) and 2. The antiferromagnetic interaction occurs in complex 3 with J CuGd = 0.82 cm-1 and J GdGd = 0.065 cm-1 , while dominant ferromagnetic interaction occurs in complex 4.  相似文献   

8.
Heating of the compounds (RC5H4)Fe(CO)2TePh (R = H (I) and Me (II)) in heptane afforded the dinuclear complexes [(RC5H4)Fe(CO)TePh]2 (III and IV, respectively). By oxidation with Fc+PF 6 ? , these complexes were transformed into the paramagnetic cationic complexes [(RC5H4)Fe(CO)TePh]2PF6 (V and VI, respectively). Structures III–V and [(C5H5)Fe(CO)SPh]2PF6 (VII) were characterized by X-ray diffraction.  相似文献   

9.
Joint condensation of 4,5-bis(4-hexadecyloxyphenoxy)phthalonitrile (A) and tetrachlorophthalonitrile (B) in boiling hexan-1-ol in the presence of lithium hexan-1-olate and subsequent reaction with LuCl3 · 6 H2O gave single-decker lutetium complexes with unsymmetrical phthalocyanines (AABB, ABAB). Reactions of the latter with 9,10-dioxo-9.10-dihydroanthraquinone-2,3-dicarbonitrile afforded mixed-ligand double-decker lutetium complexes containing tetraanthraquinonoporphyrazine as one of the ligands. Spectral properties of the synthesized complexes were studied, and all complexes were found to exhibit red fluorescence.  相似文献   

10.
This research was an outgrowth of previous reactions with [Pd13Ni13(CO)34]4? which produced a tetragonal crystal form of Pd23(CO)20(PEt3)10 (1) that has the same cuboctahedral-based Pd23 framework with an identical number of PEt3 ligands but two fewer CO ligands than the monoclinic crystal form of Pd23(CO)22(PEt3)10 (3) originally reported from reactions with Pd10(CO)12(PEt3)6. A subsequent investigation presented herein to establish whether the carbonyl capacity is influenced by the nature of the phosphine ligands has led to syntheses of Pd23(CO) x (PR3)10 [R3=Et3 (1), Bu n 3 (4), and Me2Ph (5)] with 20 CO ligands (x=20) from corresponding Pd10(CO)12(PR3)6 precursors either by deligation with Pd(OAc)2, CF3CO2H, Ni(1,5-COD)2, [NMe4]2[Ni6(CO)12], or HCO2H or by spontaneous enlargement; yields varied from 15 to 79%. Although attempts to obtain the original Pd23(CO)22(PEt3)10 (3) were unsuccessful, a highly significant outcome was the isolation (one time) of another monoclinic crystal form possessing the triethylphosphine Pd23(CO) x (PEt3)10 cluster with 21 COs (2). Both the compositions and atomic arrangements for each of five Pd23 clusters [1a (solvated); 1b (unsolvated); 2, 4, and 5] were unambiguously established from low-temperature single-crystal CCD X-ray crystallographic determinations in accordance with their nearly identical IR carbonyl frequencies. Solution 31P{1H} NMR spectra of 1 and 4 at room temperature displayed three distinct signals with expected integral ratios of 2/4/4 that are consistent with the solid-state structures of Pd23(CO)20(PR3)10 [R3=Et3 (1), Bu n 3 (4)] remaining intact in solution. The metal-core geometries of all of these Pd23(CO) x (PR3)10 clusters, including the thermodynamically stable ones with 20 CO ligands and the kinetic products with additional CO ligands (x=21, 22), are essentially the same. The common Pd23 core may be best described as possessing a centered hexacapped cuboctahedral Pd19 kernel (alternatively denoted as a centered ν2 Pd19 octahedron) with four edge-connected exopolyhedral wingtip Pd(exo) atoms that reduce the pseudo metal-core symmetry from Oh to D2h. The 10 PR3 ligands are linked to the six tetracapped Pd(cap) and four edge-capped wingtip Pd(exo) atoms; the latter four Pd(exo) atoms are each composed of four trigonal-planar Pd(μ2-CO)2(PR3) units. These crystallographic results provide compelling geometrical evidence for a heretofore unknown stereochemical example involving variable carbonyl ligation (x=20, 21, 22) of a close-packed nanosized Pd n (CO) x (PR3) y cluster (in this case with identical PEt3 ligands) without significant changes being induced in either the overall metal-core architecture or steric dispositions of the same number of PR3 ligands. These experimental findings have particular relevance to the long-standing Muetterties cluster/surface science analogy in showing that the different number (as well as different modes) of carbonyl ligations observed in these large metal carbonyl clusters are directly related to pressure-induced dissociative/nondissociative migratory coverages in CO chemisorptions on metal surfaces. The observed expanded capacity of CO coordination on the same Pd23 polyhedron without notable changes in geometry is no doubt a consequence of its virtually nanosized metal-core architecture; distances between outermost centrosymmetrically related pairs of Pd(cap) and Pd(exo) atoms in the Pd23 framework are 0.8 and 0.9 nm, respectively. An electrochemical (CV) study revealed that 1 undergoes one quasi-reversible two-electron reduction to 1 2? (E1/2=?0.91 V) and two consecutive quasi-reversible one-electron oxidations to 1/1 + at E1/2=0.08 V and 1 +/1 2+ at E1/2=0.32 V (THF; Ag/AgCl as reference electrode). A stereochemical/electronic analysis with the isostructural Au2Pd21(CO)20(PEt3)10 analogue (9) and resulting implications are given.  相似文献   

11.
The molecular geometry and electronic structure of stable organic derivatives of divalent germanium and tin, [(Me3Si)2N-M-OCH2CH2NMe2]n (M = Ge (4), n = 1; M = Sn (5), n =2) and their isomers with broken (4a, 5a) and closed (4b, 5b) intramolecular coordination bonds M←NMe2, were studied by the density functional (PBE/TZ2P/SBK-JC) and NBO methods. Factors responsible for stability of their dimers 4c and 5c were established. Dimerization of 5b in the gas phase is a thermodynamically favorable process (ΔG 0 = ?2.1 kcal mol?1) while that of 4b is thermally forbidden (ΔG 0 = 10.1 kcal mol?1), which is consistent with experimental data. The M←NMe2 coordination bond energies, ΔE 0, were found to be ?5.3 and ?8.6 kcal mol?1 for M = Ge and Sn, respectively. NBO analysis showed that the metal atoms M in molecules 4 and 5 are weakly hybridized. The lone electron pairs of the M atoms have strong s-character while vacant orbitals of these atoms, LP* M, are represented exclusively by the metal npz-AOs. The strongest orbital interactions between subunits in dimers 4c and 5c involve electron density donation from the lone electron pairs of oxygen atoms (LP O) to the LP* M orbitals.  相似文献   

12.
Two novel cluster organic frameworks derived from pyridine-2,6-dicarboxylate (PDA) and oxalate (ox2?) have been hydrothermally made: [Eu3(SO4)(PDA)3(ox)0.5(H2O)5]·4H2O (1) and Er(PDA)(ox)0.5(H2O) (2). Compound 1 possesses one-dimensional chain structure constructed from the alternate linkage of tetranuclear [Eu4(SO4)2]8+ (Eu4) and dinuclear [Eu2(ox)]4+ (Eu2) clusters. Compound 2 is a two-dimensional layer based on dimeric [Er2(COO)2]2+ (Er2) cluster units. Interestingly, such layer can be intuitively viewed as the linkages of helical chains and oxalate. In these two compounds, all anions are bivalent, and the ratio of trivalent lanthanide ions to these dianions is 2:3. Furthermore, compound 1 exhibits strong red luminescence upon 276 nm excitation.  相似文献   

13.
The reaction of the formyl-capped cluster HC(O)CCo3(CO)9 (1) with the diphosphine ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) in the presence of added Me3NO leads to the production of the disubstituted cluster HC(O)CCo3(CO)7(bpcd) (2). Thermolysis of 2 in toluene at 60 °C gives the methylidyne-capped cluster HCCo3(CO)7(bpcd) (4) and the phosphido-bridged cluster Co3(CO)7221-P(Ph)CC(PPh2)C(O)CH2C(O)] (5). Cluster 4 has been independently prepared from HCCo3(CO)9 and bpcd and shown to serve as the precursor to 5. The new clusters 2, 4, and 5 have been isolated and characterized in solution by IR and NMR (1H and 31P) spectroscopies and their solid-state structures have been established by X-ray diffraction analyses. Both clusters 2 and 4 contain 48e- and exhibit triangular Co3 cores with a chelating and bridging bpcd ligand in the solid state, respectively. The structure of 5 provides unequivocal support for the loss of the methylidyne capping ligand and P-Ph bond cleavage attendant in the activation of 4 and confirms the presence of the face capping seven-electron μ221-P(Ph)CC(PPh2)C(O)CH2C(O) ligand in the final product. The fluxionality displayed by the bpcd ligand in clusters 2 and 4 and the decarbonylation behavior of the formyl moiety in the former cluster are discussed relative to related alkylidyne-capped Co3 derivatives.  相似文献   

14.
The ESR spectrum of the first representative of highly conjugated triplet ethynylvinylcarbenes, 5-methylhexa-1,2,4-triene-1,3-diyl (1), was recorded in solid argon matrix. The zero-field splitting (ZFS) parameters of carbene 1 (D = 0.5054±0.0006 cm?1 and E = 0.0045±0.0002 cm?1) determined from the experimental ESR spectrum are in between the corresponding parameters of ethynylcarbene C3H2 (2) and vinylcarbene C3H4 (3): D(3) < D(1) < D(2) and E(2) < E(1) < E(3). Quantum chemical calculations of the ZFS parameters of 1, 2, and 3 have been carried out for the first time using two DFT-based approaches, RODFT and UDFT. An analysis of the experimental and theoretical ZFS parameters shows that carbene 1 is characterized by a greater extent of delocalization of the spin density of unpaired electrons than carbenes 2 and 3. The characteristic structural fragments of carbene 1 possess the principal features of the electronic structure of both ethynylcarbene (2) and vinylcarbene (3), respectively. Magnetic spin-spin interactions are identical in carbenes 1 and 2. The dominant contribution to D in 1 and 2 results from the one-center spin-spin interactions on carbon atoms in the propynylidene group, which are subjected to strong spin polarization.  相似文献   

15.
Three new Pd(II) complexes of Schiff base ligands, namely, [Pd4(L1)4] (1), [Pd2(L2)2Cl2] (2) and [Pd(L3)2Cl2] (3) [HL 1 ?=?N-(benzylidene)-2-aminophenol; L 2 ?=?N-(2,4-dichlorobenzylidene)-2,6-diethylbenzenamine, L 3 ?=?4-(2,4-dichlorobenzylide-neamino)phenol] have been synthesized using solvothermal methods and characterized by elemental analysis, spectroscopy and single crystal X-ray diffraction. The crystal structures of the free ligands were also determined. The ??-oxygen-bridged tetranuclear cyclometallated Pd(II) complex (1) contains four nearly planar units, in which PdII is four-coordinate. Complex 2 is a ??-chloro-bridged dinuclear cyclometallated Pd(II) complex, whereas complex 3 is mononuclear. The Heck reactions of bromobenzene with acrylic acid catalyzed by complexes 1?C3 have also been studied.  相似文献   

16.
The interaction of Cu(II), Fe(III) and Co(III) with 6,6,13-trimethyl-13-amino-1,4,8,11-tetraazacyclotetradecane (L 3 ) incorporating a pendent amine group has led to isolation of the new octahedral complexes [Cu(HL 3 )(ClO4)2]Cl·H2O (1), [Fe(L 3 )Cl](S2O6)·H2O (2), [Co(L 3 )Cl](ClO4)1.5Cl0.5·0.25H2O (3), [Co(HL 3 )Cl2](ClO4)2·H2O (4) and [Co(L 3 )Cl]2(S2O4)(ClO4)2 (5). In (1) the copper ion occupies the macrocyclic cavity of protonated (–NH3 +) L 3 which is present in its trans-III configuration; weakly bound ClO4 ? ligands occupy the axial positions. The X-ray structure of (2) showed that Fe(III) occupies the N4-macrocyclic cavity of L 3 in a trans-III configuration, with the pendent amine group binding in an axial position. The remaining axial position is occupied by a Cl? ligand. Chromatography of the product obtained from the reaction of Na3[Co(CO3)3] with L 3 yielded three fractions. Fraction 1 yielded crystals (3) composed of three crystallographically independent species incorporating cations of type [Co(L 3 )Cl]2+ with very similar structures; in each case the macrocyclic ring nitrogens of L 3 are bound to the Co(III) in an asymmetric cis-fashion. Fraction 2 yielded the trans-III octahedral cationic complex (4) incorporating L 3 in its protonated form. The Co(III) complex (5) from fraction 3 shows a different coordination arrangement to the products from fractions 1 or 2. The macrocyclic ring coordinates in its trans-III form, but the axial sites in this case are occupied by the pendent-NH2 group and a Cl? ligand.  相似文献   

17.
Energetic, geometric and magnetic criteria were applied to examine the stability and/or aromatic character for the cyclic molecules C 4 H 4 M (M = O, S, Se, Te, NH, PH, AsH and SbH) at B3LYP/6-311++G** and MP2/6-311++G** levels of theory. The isodesmic reactions and nuclear independent chemical shifts (NICS) calculations were utilized to examine the molecules for energetic and magnetic criteria, respectively. The isodesmic reaction energies reveal that thiophene (C 4 H 4 S, ?23.269 kcal/mol) and pyrrole (C 4 H 4 NH, ?20.804 kcal/mol) have the greatest aromatic stabilization energies and tellurophene (C 4 H 4 Te, ?15.114 kcal/mol) and stibole (C 4 H 4 SbH, ?1.169 kcal/mol) have the lowest aromatic stabilization energies in their corresponding groups at MP2/6-311++G**. The NICS calculations confirmed the results obtained through isodesmic reaction energies.  相似文献   

18.
Modification of [VO(OPri)3] with oximes in different molar ratios, yielded new class of vanadia precursors, [VO{OPri}3?n{L}n] {where, n = 1–3 and LH = C9H16C=NOH (1–3) and (CH3)2C=NOH (46)}.All the products are yellow in colour. (1) and (2) are liquid/viscous liquid, while others are solids. Molecular weight measurements of all these derivatives and the ESI-mass spectral studies of (1), (2), (3) and (5) indicate their monomeric nature. 1H and 13C{1H} NMR spectra suggest that the oximato moieties are monodentate in solution which was further confirmed by the 51V NMR signals, appeared in the region expected for tetra-coordinated oxo-vanadium atoms. On ageing, a disproportionation reaction occurs in (1) and some crystals appeared. Single crystal X-ray diffraction analyses of the crystals obtained from (1) as well as from (3) were found to be the same and indicate the presence of side-on {dihapto η 2-(N, O)} binding modes of the oximato ligands, leading to the formation of seven coordination environment around the vanadium atom. Thermogravimetric curve of (1) exhibits multi-step decomposition with the formation of V2O5 as the final product at ~850 °C. Sol–gel transformation of (3) yielded (a) VO2 sintered at 300 °C and (b) V2O5 at 600 °C. Similarly, sol–gel transformations of (1) and (2) yielded V2O5 (c) and (d) at 600 °C, respectively. Formation of monoclinic phase in (a) and orthorhombic phase in (b), (c) and (d) were confirmed by powder XRD patterns.  相似文献   

19.
The mononuclear pyrazolyl complexes [PdCl2(HIPz)2] (1), [PdBr2(HIPz)2] (2), [PdI2(HIPz)2] (3), [Pd(SCN)2(HIPz)2] (4), and [Pd(NHCOIPz)2] (5) have been prepared. Compound 1 was obtained from the displacement of acetonitrile from [PdCl2(CH3CN)2] precursor by the 4-iodopyrazole (HIPz) ligand, whereas 25 were synthesized by substitution of the chlorido in 1 by the respective anionic group. The compounds were characterized by elemental analysis, infrared spectroscopy, and 1H NMR spectroscopy. The thermal behavior of 15 has been studied by TG and DTA. The thermal stability of [PdX2(HIPz)2] compounds varies according to the trends X = Cl? < I? ? SCN?< Br?. No stable intermediates were isolated during the thermal decompositions due to the overlap of the degradation processes. The final products of the thermal decompositions were characterized as metallic palladium by X-ray powder diffraction.  相似文献   

20.
Based on the new binuclear gold(I) complex [(AuCl)2(L1)] (1) (L1?=?2,3-bis(diphenylphosphino)maleic anhydride) four new polynuclear compounds were synthesized by reactions of 1 with E(SiMe3)2 (E?=?S, Se). During the formation of these new compounds the initial ligand L1 undergoes various transformations (e.g. substitution, hydration or hydrogenation) leading to the new ligands: trans-2,3-bis(diphenylphosphino)succinic anhydride (L2), 2-diphenylphosphino-3-mercapto-maleic anhydride anion (L3), 2-diphenylphosphino-3-selenolato-maleic anhydride anion (L4) and 2,3-bis(diphenylphosphino)succinic acid (L5). In case of using the sulfur species S(SiMe3)2 a pentanuclear cluster, [Au5(PPh2)3(L3)2] (2), and a 24-nuclear cluster, [Au24S6(PPh2)4(L3)8] (3), could be obtained. With Se(SiMe3)2 the binuclear complex, [(AuCl)2(L2)] (4), and the dodecanuclear cluster, [Au12Se4(L4)4(L5)2] (5), were yielded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号