首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Proton conducting oxide ceramics have shown potential for use in fuel cell technologies. Understanding the energy pathways for proton conduction could help us design more efficient fuel cell materials. This paper describes how octahedral tilting affects the relative energies of proton binding sites, transition states, and conduction pathways in cubic and pseudo-cubic perovskites. First, the structure for cubic and pseudo-cubic forms of BaTiO(3), BaZrO(3), CaTiO(3), and CaZrO(3), is found. Even when cubic symmetry is enforced, CaTiO(3), and CaZrO(3) exhibit octahedral tilting distortions characteristic of orthorhombic phases while BaTiO(3) and BaZrO(3) remain undistorted. Octahedral tilting gives rise to proton binding sites facilitating inter- and intra-octahedral proton transfer while the proton binding sites of undistorted perovskites facilitate only intra-octahedral proton transfer. The nudged elastic band method is used to find minimum energy paths between the proton binding sites. As distortions increase, inter-octahedral proton transfer barriers decrease while intra-octahedral proton transfer barriers increase. Concurrently, rotational barriers from oxygens facilitating inter-octahedral proton transfer increase while rotational barriers from oxygens facilitating intra-octahedral proton transfer decrease. Intra-octahedral transfer is the rate-limiting step to the lowest energy extended proton conduction pathway in all the perovskites considered.  相似文献   

2.
The proton transfer in NH(3)-HCl by only one molecule of catalyst was studied by using the MP2 method with the large 6-311++G(2d,2p) basis set. The 18 structures are obtained for the smallest units, NH(3)-HCl-A trimers, for which the proton transfer maybe occurred. The final results show that the proton transfers have occurred in the 15 cyclic shape structures for A = H(2)SO(4), H(2)SO(3), HCOOH (a), HF, H(2)O(2), HNO(3), HNO(2) (a), CH(3)OH, HCl, HNC, H(2)O, HNO(2) (b), NH(3), HCOOH (b), and HCHO, and not occurred in another 3 trimer structures for A = HCN, H(2)S, and PH(3). These results show that the proton transfer occurs from HCl to NH(3) when catalyst molecule A (acidic, neutral, or basic) not only as a proton donor strongly donates the proton to the Cl atom but as an acceptor strongly accepts the proton from the NH(3) molecule in the cyclic H-bond structure. In this work, a proton circumfluence model is proposed to explain the mechanism of the proton transfer. We find that, for the trimer, when the sum of two hydrogen bond lengths (R = R(1) + R(2)) is shorter than 5.0 A, molecule A has the ability to catalyze the proton transfer. In addition, we also find that the interaction energy E(int) between NH(3)-HCl and A is nearly related to the extent (R(H1)(-)(Cl)) of proton transfer, that is, the interaction energy E(int) increases with the proton transfer.  相似文献   

3.
Computer simulations of ice Ih with different proton orientations are presented. Simulations of proton disordered ice are carried out using a Monte Carlo method which samples over proton degree of freedom, allowing for the calculation of the dielectric constant and for the examination of the degree of proton disorder. Simulations are also presented for two proton ordered structures of ice Ih, the ferroelectric Cmc2(1) structure or ice XI and the antiferroelectric Pna2(1) structure. These simulations indicate that a transition to a proton ordered phase occurs at low temperatures (below 80 K). The symmetry of the ordered phase is found to be dependent on the water potential. The stability of the two proton ordered structures is due to a balance of short-ranged interactions which tend to stabilize the Pna2(1) structure and longer-range interactions which stabilize the Cmc2(1) structure.  相似文献   

4.
The goal of this work is to determine the proton affinities of (deoxy)nucleoside 5'- and 3'-monophosphates (mononucleotides) using the kinetic method with fast atom bombardment mass spectrometry. The proton affinities of the (deoxy)nucleoside 5'- and 3'-monophosphates yielded the following trend: (deoxy)adenosine monophosphates > (deoxy)guanosine monophosphates > (deoxy)cytidine monophosphates > deoxythymidine/uridine monophosphates. In all cases the proton affinity decreases or remains the same with the addition of the phosphate group from those values reported for nucleosides. The proton affinity is dependent on the location of the phosphate backbone (5'-vs. 3'-phosphates): the 3'-monophosphates have lower proton affinities than the 5'-monophosphates except for the thymidine/uridine monophosphates where the trend is reversed. Molecular modeling was utilized to determine if multiple protonation sites and intramolecular hydrogen bond formation would influence the proton affinity measurements. Semiempirical calculations of the proton affinities at various locations on each mononucleotide were performed and compared to the experimental results. The possible influence of intramolecular hydrogen bonding between the nucleobases and the phosphate group on the measured and calculated proton affinities is discussed.  相似文献   

5.
Wild-type bacteriorhodopsin (BR) and another retinal protein archaerhodopsin 4 (AR4) are both light-driven proton pumps, but exhibit opposite temporal orders of proton release and uptake upon a flash illumination at neutral pH due to a higher pK(a) of proton release complex (PRC) in AR4. Since the 77th residue in the extracellular side is proline (P) in BR, but aspartic acid (D) in AR4, we have mutated P77 in BR by D in this study. The new point mutation was found to affect the kinetics of proton release and the pH dependence significantly. Upon a flash excitation, three components "fast proton release,"proton uptake" and "slow proton release" were observed at neutral pH in P77D. The pK(a) of PRC in the M intermediate was increased from 5.6 in the wild-type to 7.0, and became closer to that in AR4, which is 8.4. The coupling strength between D85 and PRC were also weakened, as expected. These data indicate that the 77th residue in AR4 greatly account for the difference between the two proton pumps.  相似文献   

6.
A series of model calculations was done to analyze the delocalization of the proton in the linking hydrogen bond of the (Dih)(2)H(+) cation (Dih: 4,5-dihydro-1H-imidazole). Standard quantum chemical calculations (B3LYP/D95+(d,p)) predict a low barrier hydrogen bond (LBHB) and thereby a delocalized proton in the NHN(+) hydrogen bridge. Explicit quantum calculations on the proton indicate that the delocalization of the proton does not provide enough energy to stabilize a permanent LBHB. Additional Born-Oppenheimer Molecular Dynamics (BOMD) simulations indicate further that the proton is localized at either side of the NHN(+) bridge and that a central proton position is the result of temporal averaging. The possibility of the proton to tunnel from one side to the other side of the NHN(+) bridge increases with the temperature as the trajectory of the (Dih)(2)H(+) cation runs through regions where the thermal excitation of Dih ring vibrations creates equal bonding opportunities for the proton on both sides of the bridge (vibrationally assisted proton tunneling). The quantum calculations for the proton in (Dih)(2)H(+) suggest further a broad peak for the 1 ← 0 transition with a maximum at 938 cm(-1) similar to that observed for LBHBs. Moreover, the asymmetric NHN(+) bridge in a thermally fluctuating environment is strong enough to create a significant peak at 1828 cm(-1) for the 2 ← 0 transition, while contributions from the 2 ← 1 are expected to be weak for the same reason.  相似文献   

7.
A detailed theoretical investigation of the charge transport mechanism in poly(4-vinyl-imidazole) (P4VI), the parent polymer of a series of N-heterocyclic-based membranes used as an electrolyte in proton exchange membrane fuel cells, is presented. In particular, Density Functional Theory (DFT) results obtained for small model systems (protonated imidazole dimers and trimers) suggest that the commonly accepted conduction mechanism, based on a sequential proton transfer between imidazole moieties, could be impeded by the geometrical constraints imposed by the polymeric backbone. Indeed only one kind of proton transfer reaction is energetically allowed between adjacent imidazoles, so that a rotation of the protonated imidazole is required for a second proton transfer. Molecular dynamics simulations on a larger model (15 oligomers with an excess proton) show that the rotation of the imidazole carrying the excess proton is a soft large amplitude motion. These results allow us to propose a new proton conduction mechanism in P4VI, where a frustrated rotation of the protonated imidazole before each proton transfer reaction represents the rate-limiting step. Furthermore, in contrast with the Grotthuss proton transport mechanism in water, our results indicate that here it is the same proton which could be successively transferred. From a chemical point of view, these new insights into the mechanism are relevant for a rational design of modified azole-based systems for Proton Exchange Membrane Fuel Cells.  相似文献   

8.
Density functional theory calculations at the B3LYP/6-31+G(d,p) level of theory have been performed to explore proton exchanges between phenols and ammonia or amines, which can be used to account for previous NMR experiments. For the parent phenol-NH(3) system, a transition state with a symmetric phenolate-NH(4)(+)-like structure, which lies about 35 kcal mol(-1) in energy above the hydrogen-bonded complex, has been successfully located. An intrinsic reaction coordinate (IRC) analysis indicates that the proton exchange is a concerted process, which can be roughly divided into four continuous subprocesses. A series of para-substituted phenol-NH(3) systems have been considered to investigate the substituent effect. Whereas introduction of an electron-withdrawing group on the phenol appreciably reduces the barrier, an opposite effect is observed for an electron-donating group. Moreover, it has been disclosed that there exists a good linear correlation between the activation barriers and the interaction energies between the phenols and NH(3), indicating the important role of proton transfer (or hydrogen bonding) in determining the proton exchange. Also considered are the proton exchanges between phenol and amines and those for some sterically hindered systems. The results show that the phenol tends to exchange hydrogen with the amines, preferably the secondary amines, and that the steric effect is favorable for the proton exchange, which imply that, as the IRC analysis suggested, besides the proton transfer, the flip of the ammonium-like moiety may play a significant role in the course of proton exchange. For all of these systems, we investigated the solvent effects and found that the barrier heights of proton exchange decrease remarkably as compared to those in a vacuum due to the ion pair feature of the transition state. Finally, we explored the phenol radical cation-NH(3) system; the barrierless proton transfer and remarkably low barrier (5.2 kcal mol(-1)) of proton exchange provide further evidence for the importance of proton transfer in the proton exchange.  相似文献   

9.
Proton transport is ubiquitous in chemical and biological processes, including the reduction of dioxygen to water, the reduction of CO(2) to formate, and the production/oxidation of hydrogen. In this work we describe intramolecular proton transfer between Ni and positioned pendant amines for the hydrogen oxidation electrocatalyst [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+) (P(Cy)(2)N(Bn)(2) = 1,5-dibenzyl-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane). Rate constants are determined by variable-temperature one-dimensional NMR techniques and two-dimensional EXSY experiments. Computational studies provide insight into the details of the proton movement and energetics of these complexes. Intramolecular proton exchange processes are observed for two of the three experimentally observable isomers of the doubly protonated Ni(0) complex, [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+), which have N-H bonds but no Ni-H bonds. For these two isomers, with pendant amines positioned endo to the Ni, the rate constants for proton exchange range from 10(4) to 10(5) s(-1) at 25 °C, depending on isomer and solvent. No exchange is observed for protons on pendant amines positioned exo to the Ni. Analysis of the exchange as a function of temperature provides a barrier for proton exchange of ΔG(?) = 11-12 kcal/mol for both isomers, with little dependence on solvent. Density functional theory calculations and molecular dynamics simulations support the experimental observations, suggesting metal-mediated intramolecular proton transfers between nitrogen atoms, with chair-to-boat isomerizations as the rate-limiting steps. Because of the fast rate of proton movement, this catalyst may be considered a metal center surrounded by a cloud of exchanging protons. The high intramolecular proton mobility provides information directly pertinent to the ability of pendant amines to accelerate proton transfers during catalysis of hydrogen oxidation. These results may also have broader implications for proton movement in homogeneous catalysts and enzymes in general, with specific implications for the proton channel in the Ni-Fe hydrogenase enzyme.  相似文献   

10.
Identifying the group that acts as the proton storage/loading site is a challenging but important problem for understanding the mechanism of proton pumping in biomolecular proton pumps, such as bacteriorhodopsin (bR) and cytochrome c oxidase. Recent experimental studies of bR propelled the idea that the proton storage/release group (PRG) in bR is not an amino acid but a water cluster embedded in the protein. We argue that this idea is at odds with our knowledge of protein electrostatics, since invoking the water cluster as the PRG would require the protein to raise the pK(a) of a hydronium by almost 11 pK(a) units, which is difficult considering known cases of pK(a) shifts in proteins. Our recent quantum mechanics/molecular mechanics (QM/MM) simulations suggested an alternative "intermolecular proton bond" model in which the stored proton is shared between two conserved Glu residues (194 and 204). Here we show that this model leads to microscopic pK(a) values consistent with available experimental data and the functional requirement of a PRG. Extensive QM/MM simulations also show that, independent of a number of technical issues, such as the influence of QM region size, starting X-ray structure, and nuclear quantum effects, the "intermolecular proton bond" model is qualitatively consistent with available spectroscopic data. Potential of mean force calculations show explicitly that the stored proton strongly prefers the pair of Glu residues over the water cluster. The results and analyses help highlight the importance of considering protein electrostatics and provide arguments for why the "intermolecular proton bond" model is likely applicable to the PRG in biomolecular proton pumps in general.  相似文献   

11.
In this work we consider the coupling of electron and proton transfer near Q(B) in the reaction center (RC) of photosystem II (PS2). We have carried out the calculations of the energy levels and proton density in the system Q(B)(-) Histidine L190. It is shown that the proton of the histidine forms the H-bond with twice-reduced Q(B)(2-). Based on these calculations, we propose a new explanation of the coupling between the electron and proton transfer.  相似文献   

12.
The acid-activated proton channel formed by the influenza M2 protein is important for the life cycle of the virus. A single histidine, His37, in the M2 transmembrane domain (M2TM) is responsible for pH activation and proton selectivity of the channel. Recent studies suggested three models for how His37 mediates proton transport: a shuttle mechanism involving His37 protonation and deprotonation, a H-bonded imidazole-imidazolium dimer model, and a transporter model involving large protein conformational changes in synchrony with proton conduction. Using magic-angle-spinning (MAS) solid-state NMR spectroscopy, we examined the proton exchange and backbone conformational dynamics of M2TM in a virus-envelope-mimetic membrane. At physiological temperature and pH, (15)N NMR spectra show fast exchange of the imidazole (15)N between protonated and unprotonated states. To quantify the proton exchange rates, we measured the (15)N T(2) relaxation times and simulated them for chemical-shift exchange and fluctuating N-H dipolar fields under (1)H decoupling and MAS. The exchange rate is 4.5 × 10(5) s(-1) for Nδ1 and 1.0 × 10(5) s(-1) for Nε2, which are approximately synchronized with the recently reported imidazole reorientation. Binding of the antiviral drug amantadine suppressed both proton exchange and ring motion, thus interfering with the proton transfer mechanism. By measuring the relative concentrations of neutral and cationic His as a function of pH, we determined the four pK(a) values of the His37 tetrad in the viral membrane. Fitting the proton current curve using the charge-state populations from these pK(a)'s, we obtained the relative conductance of the five charge states, which showed that the +3 channel has the highest time-averaged unitary conductance. At physiologically relevant pH, 2D correlation spectra indicated that the neutral and cationic histidines do not have close contacts, ruling out the H-bonded dimer model. Moreover, a narrowly distributed nonideal helical structure coexists with a broadly distributed ideal helical conformation without interchange on the sub-10 ms time scale, thus excluding the transporter model in the viral membrane. These data support the shuttle mechanism of proton conduction, whose essential steps involve His-water proton exchange facilitated by imidazole ring reorientations.  相似文献   

13.
Cytochrome c oxidase (CcO), known as complex IV of the electron transport chain, plays several important roles in aerobic cellular respiration. Electrons transferred from cytochrome c to CcO's catalytic site reduce molecular oxygen and produce a water molecule. These electron transfers also drive active proton pumping from the matrix (N-side) to intermembrane region (P-side) in mitochondria; the resultant proton gradient activates ATP synthase to produce ATP from ADP. Although the existence of the coupling between the electron transfer and the proton transport (PT) is established experimentally, its mechanism is not yet fully understood at the molecular level. In this work, it is shown why the reduction of heme a is essential for proton pumping. This is demonstrated via novel reactive molecular dynamics (MD) simulations that can describe the Grotthuss shuttling associated with the PT as well as the dynamic delocalization of the excess proton electronic charge defect. Moreover, the "valve" role of the Glu242 residue (bovine CcO notation) and the gate role of d-propionate of heme a(3) (PRDa3) in the explicit PT are explicitly demonstrated for the first time. These results provide conclusive evidence for the CcO proton transporting mechanism inferred from experiments, while deepening the molecular level understanding of the CcO proton switch.  相似文献   

14.
We have modeled structures and energetics of anhydrous proton-conducting wires: tethered hydrogen-bonded chains of the form ···HX···HX···HX···, with functional groups HX = imidazole, triazole, and formamidine; formic, sulfonic, and phosphonic acids. We have applied density functional theory (DFT) to model proton wires up to 19 units long, where each proton carrier is linked to an effective backbone to mimic polymer tethering. This approach allows the direct calculation of hydrogen bond strengths. The proton wires were found to be stabilized by strong hydrogen bonds (up to 50 kJ/mol) whose strength correlates with the proton affinity of HX [related to pK(b)(HX)] and not to pK(a)(HX) as is often assumed. Geometry optimizations and ab initio molecular dynamics near 400 K on imidazole-based proton wires both predict that adding a proton to the end of such wires causes the excess charge to embed into the interior segments of these wires. Proton translocation energy landscapes for imidazole-based wires are sensitive to the imidazole attachment point (head or feet) and to wire architecture (linear or interdigitated). Linear imidazole wires with head-attachment exhibit low barriers for intrawire proton motion, rivaling proton diffusion in liquid imidazole. Excess charge relaxation from the edge of wires is found to be dominated by long-range Grotthuss shuttling for distances as long as 42 ?, especially for interdigitated wires. For imidazole, we predict that proton translocation is controlled by the energetics of desorption from the proton wire, even for relatively long wires (600 imidazole units). Proton desorption energies show no correlation with functional group properties, suggesting that proton desorption is a collective process in proton wires.  相似文献   

15.
Proton transport along different axes in an organic-inorganic compound [(C(6)H(10)N(2))(2)(SO(4))(2)·3H(2)O](n) (1) was investigated, revealing that proton transport is not only influenced by the structure of the proton transport pathway, but also by the order-disorder extent of proton carriers.  相似文献   

16.
A proton–electron coupling system, exhibiting unique bistability or multistability of the protonated state, is an attractive target for developing new switchable materials based on proton dynamics. Herein, we present an iron(II) hydrazone crystalline compound, which displays the stepwise transition and bistability of proton transfer at the crystal level. These phenomena are realized through the coupling with spin transition. Although the multi-step transition with hysteresis has been observed in various systems, the corresponding behavior of proton transfer has not been reported in crystalline systems; thus, the described iron(II) complex is the first example. Furthermore, because proton transfer occurs only in one of the two ligands and π electrons redistribute in it, the dipole moment of the iron(II) complexes changes with the proton transfer, wherein the total dipole moment in the crystal was canceled out owing to the antiferroelectric-like arrangement.  相似文献   

17.
The effect of lipid environment in purple membrane on bacteriorhodopsin   总被引:3,自引:0,他引:3  
The decay rate of the Bacteriorhodopsin (BR) photocycle intermediate M412 and proton, the proton pump efficiency (H+/M412), the ratios of M412 to other intermediates and the rotational correlation time (tauc) in purple membrane (PM) fragments treated by the zwitterionic detergent 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) with different concentrations were studied. The results show that: (1) The largest effect of CHAPS on M412 decay rate and proton decay rate of BR, tauc of PM and the ratios of M412 to other intermediates in BR photocycle is in the range of its critical micelle concentration (CMC). This indicates that changes of the ratios of M412 to other intermediates, tauc, M412 decay and proton decay occur and are due to the variation of the lipid environment. (2) The dependency of proton yield on CHAPS concentrations is basically consistent with that of M412s%. This indicates the relation between proton pumping function and M412. These studies show the importance of maintaining a native environment.  相似文献   

18.
A new cost-effective amperometric proton selective sensor utilizing a single microhole interface between two immiscible electrolyte solutions (ITIES) is developed. The sensing methodology is based on measuring currents associated with proton transfer across the interface assisted by a proton selective ionophore. The ellipse shaped micro-interface was first fabricated by simple mechanical punching with a sharp needle on a thin PVC film (12 μm thick) commercially available as a food wrapping material. The microhole was then filled up with a gellified polyvinylchloride (PVC)-2-nitrophenyloctylether (NPOE) to create a single microhole liquid/liquid interface. Direct ion transfer reactions across the polarized interface serving as ion sensing platforms were studied using cyclic voltammetry. In order to enhance the selectivity of proton sensing, a proton selective ionophore, octadecyl isonicotinate (ETH1778), was incorporated into the organic gel layer and their electrochemical sensing characteristics were investigated using cyclic voltammetry and differential pulse stripping voltammetry. As an example, we employed the proton selective sensor for the determination of glucose concentrations. The detection scheme involves two steps: (i) protons are first generated by the oxidation of glucose with glucose oxidase in the aqueous phase; and (ii) the current associated with the proton transfer across the interface is then measured for correlating the concentration of glucose.  相似文献   

19.
The scope of the present work is the investigation of proton transport through monomolecular Langmuir-Blodgett (LB) films. The films were formed from amphiphilic molecules: 2-naphtholo-6-sulfonamide of dodecylamine (N) and 1,4-anthraquinono-2 sulfonamide of dodecylamine (A). The 2-naphthol derivative can act as a proton donor due to excited state proton transfer (ESPT) and the 1,4-anthraquinone group can play the role of proton acceptor because of protonation of the reduced form if it is present. Absorption and emission spectra of LB films containing N and A were registered and separated into component bands. Individual absorption and emission peaks observed were assigned to given forms of chromophores. The behavior of different component bands reflects the state of anthraquinone dependent on proton concentration. A correlation of rate and efficiency of ESPT, with changes of the spectra of A, may be expected to yield information concerning the transport of protons from N to A. The influence of the donor-acceptor distance, sample humidity, film arrangement and the presence of protonophores (Gramicidin A) on proton transfer is studied. Our results indicate that the proton can be transported through the film but its concentration vanishes at the distance greater than 30 A. The efficiency of proton transfer depends strongly on water content, film structure and the presence of ion channels.  相似文献   

20.
We studied the effect of palmitic acid (PA) and cholesterol (approximately 17 wt.%) on proton translocation across asolectin (charged) and diphytanoylphosphatidylcholine (DPhPC, neutral) black lipid membranes (BLMs). Potential difference (PD), short circuit current (SCC), and conductance (G(total)) were measured with a digital electrometer. Membranes were exposed to pH gradients (0.4-2.0 units), followed by PA addition to bath (symmetrically, 40-65 microM). The membrane conductive pathway was subdivided into an unspecific and a proton-related routes. A computer program estimated the conductances (G(un) and G(H)) of the two pathways from the measured parameters. No significant differences in proton selectivity were found between DPhPC membranes and DPhPC/cholesterol membranes. By contrast, cholesterol incorporation into asolectin increases membranes selectivity to proton. Cholesterol dramatically reduced G(un) reflecting, probably, its ability of inducing order in lipid chains. In asolectin membranes, PA increases proton selectivity, probably by acting as a proton shuttle according to the model proposed by Kamp and et al. [Biochemistry 34 (1995) 11928]. Cholesterol incorporation into asolectin membranes eliminates the PA-induced increase in proton selectivity. In DPhPC and DPhPC/cholesterol membranes, PA does not affect proton selectivity. These results are discussed in terms of the presence of cardiolipin (CL) in asolectin, cholesterol/PA interactions, and cholesterol order-inducing effects on acyl-chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号