首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we obtain the global existence and uniqueness of classical solutions to a viscous liquid-gas two-phase model with mass-dependent viscosity and vacuum in one dimension, where the initial vacuum is allowed. We get the upper and lower bounds of gas and liquid masses n and m by the continuity methods which we use to study the compressible Navier-Stokes equations.  相似文献   

2.
In this paper, we consider the three dimensional Cauchy problem of the compressible micropolar viscous flows. We prove the existence of unique global classical solution for smooth initial data with small initial energy but possibly large oscillations and the initial density may allowed to contain the interior and far field vacuum states. Furthermore, the large time behavior of the solution is obtained as well.  相似文献   

3.
We study the initial boundary value problem to the system of the compressible Navier-Stokes equations coupled with the Maxwell equations through the Lorentz force in a bounded annulus Ω of R3. And a result on the existence and uniqueness of global spherically symmetric classical solutions is obtained. Here the initial data could be large and initial vacuum is allowed.  相似文献   

4.
In this paper, we consider the global existence and uniqueness of the classical solutions for the three‐dimensional where the existence of global classical solutions to the compressible Navier–Stokes equations was obtained by using the continuity methods under the assumption that the initial energy is sufficiently small. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
C. Miao In this paper, we are concerned with the 1D Cauchy problem of the compressible Navier–Stokes equations with the viscosity μ(ρ) = 1+ρβ(β≥0). The initial density can be arbitrarily large and keep a non‐vacuum state at far fields. We will establish the global existence of the classical solution for 0≤β < γ via a priori estimates when the initial density contains vacuum in interior interval or is away from the vacuum. We will show that the solution will not develop vacuum in any finite time if the initial density is away from the vacuum. To study the well‐posedness of the problem, it is crucial to obtain the upper bound of the density. Some new weighted estimates are applied to obtain our main results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
We consider an one-phase quasi-stationary Stefan problem (Hele–Shaw problem) in multidimensional case. Under some reasonable conditions we prove that the problem has a classical solution globally in time. The method can be used in two-phase problem as well. We also discuss asymptotic behavior of solution as t→+∞. The method developed here can be extended to a general class of free boundary problems.  相似文献   

7.
In this paper, we consider the initial-boundary problem for a 1D two-fluid model with densitydependent viscosity and vacuum. The pressure depends on two variables but the viscosity only depends on one of the densities. We prove the global existence and uniqueness of the classical solution in the one-dimensional space with large initial data and vacuum. We use a new Helmholtz free energy function and the material derivative of the velocity field to deal with the general pressure with two variable...  相似文献   

8.
9.
In this paper, we prove the global existence of small classical solutions to the 3D generalized compressible Oldroyd-B system. It can be seen as compressible Euler equations coupling the evolution of stress tensor τ. The result mainly shows that singularity of solutions to compressible Euler equations can be prevented by the coupling of viscoelastic stress tensor. Moreover, unlike most complex fluids containing compressible Euler equations, the irrotational condition ∇×u=0 would not be proposed here to achieve the global well-posedness.  相似文献   

10.
In this work, we obtain the global existence and uniqueness of classical solu-tions to a viscous liquid-gas two-phase model with mass-dependent viscosity and vacuum in one dimension, where the initial vacuum is allowed. We get the upper and lower bounds of gas and liquid masses n and m by the continuity methods which we use to study the compressible Navier-Stokes equations.  相似文献   

11.
In this paper, we prove a blow-up criterion in terms of the upper bound of the liquid mass for the strong solution to the two-dimensional (2D) viscous liquid-gas two-phase flow model in a smooth bounded domain. The result also applies to three-dimensional (3D) case.  相似文献   

12.
We consider the Cauchy problem of isentropic compressible magnetohydrodynamic equations with large potential force in . When the initial data (ρ0,u0,H0) is of small energy, we investigate the global well‐posedness of classical solutions where the flow density is allowed to contain vacuum states.  相似文献   

13.
This paper is concerned with the viscous liquid–gas two-phase flow model in a three-dimensional exterior domain with the slip boundary conditions. We are able to prove the existence of a global strong solution when the initial total energy is suitably small. The initial masses of liquid and gas are allowed to contain a vacuum, with no extra restriction between the initial masses of liquid and gas. It should be noted here that we consider the slip boundary condition in a three dimensional (3D) exterior domain which is in sharp contrast to result of Yu (2021) where they consider the Cauchy problem.  相似文献   

14.
15.
In this paper, the Cauchy problem to the two‐dimensional isentropic compressible Navier–Stokes equations with smooth initial data containing vacuum is investigated. If the initial data are of small energy but possibly large oscillations, we obtain the global well‐posedness of classical solutions in the case of initially nonvacuum far fields. In particular, the smallness of the energy only depends on the norm of the initial velocity, where β can be arbitrary close to 0. In the case of compactly supported initial density, a blow‐up example is given. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
In this article, we investigate the hyperbolic geometry flow with time-dependent dissipation(?~2 g_(ij))/? t~2+μ/((1 + t)~λ)(? g_(ij))/? t=-2 R_(ij),on Riemann surface. On the basis of the energy method, for 0 λ≤ 1, μ λ + 1, we show that there exists a global solution gij to the hyperbolic geometry flow with time-dependent dissipation with asymptotic flat initial Riemann surfaces. Moreover, we prove that the scalar curvature R(t, x) of the solution metric g_(ij) remains uniformly bounded.  相似文献   

17.
This work deals with a viscous two-phase liquid–gas model relevant to the flow in wells and pipelines. The liquid is treated as an incompressible fluid whereas the gas is assumed to be polytropic. The model is rewritten in terms of Lagrangian coordinates and is studied in a free boundary setting where the liquid and gas masses are of compact support initially, and continuous at the boundary. Consequently, the initial masses involve a transition to single-phase gas flow and vacuum at the boundary. An appropriate balance between pressure and viscous forces is identified which allows obtaining pointwise upper and lower estimates of masses. These estimates rely on the assumption of a certain relation between the rate of degeneracy of the viscosity coefficient and the rate that determines how fast the initial masses are vanishing at the boundary. By combining these estimates with basic energy type of estimates, higher order regularity estimates are obtained. The existence of global weak solutions is then proved by showing compactness for a class of semi-discrete approximations.  相似文献   

18.
This paper deals with the unsteady axisymmetric flow and heat transfer of a viscous fluid over a radially stretching sheet. The heat is prescribed at the surface. The modelled non-linear partial differential equations are solved using an analytic approach namely the homotopy analysis method. Unlike perturbation technique, this approach gives accurate analytic approximation uniformly valid for all dimensionless time. The explicit expressions for velocity, temperature and skin friction coefficient are developed. The influence of time on the velocity, temperature and skin friction coefficient is discussed.  相似文献   

19.
20.
The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study of compressible nonconservative two-fluid model, drift-flux model and viscous liquid-gas two-phase flow model. We give the research developments of these three two-phase flow models, respectively. In the last part, we give some open problems about the above models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号