首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics and mechanism of the removal of M2+ from bis-(heptane-2,4,6-trionato)M(II) [M = Ni, Co] by ethylenediminetetraacetic acid (EDTA), nitrilotriacetic acid (NAT), 1,2-cyclohexanediamine-N, N, N′, N′-tetraacetic acid (CyDTA), and ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA) have been investigated using stopped-flow spectrophotometry in methanol-water at 25°C and ionic strength 0.1 mol dm?3 KNO3. The reactions were investigated at a number of different pHs. An associative mechanism is proposed to account for the kinetic data. Although all the ligands have similar functional groups, their reactivity towards the parent complex is quite different. The pH dependence of the rate constants has been used to determine the relative reactivities of the various ligand species present. In the case of nitrilotriacetic acid, a nonlinear dependence on ligand concentration is observed, thus confirming the mechanism proposed. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
A method has been devised that creates a planar Ni(II) site from a tetrahedral site in a NiFe(3)S(4) cubane-type cluster. Reaction of [(Ph(3)P)NiFe(3)S(4)(LS(3))](2)(-) (2) with 1,2-bis(dimethylphosphino)ethane affords [(dmpe)NiFe(3)S(4)(LS(3))](2)(-) (3), isolated in ca. 45% yield as (Et(4)N)(2)[3a].2.5MeCN and (Et(4)N)(2)[3b].0.25MeCN, both of which occur in triclinic space group P. Each crystalline form contains two crystallographically inequivalent clusters with the same overall structure but slightly different dimensions. The cluster is bound by three thiolate terminal ligands to semirigid cavitand ligand LS(3). The NiFe(3)S(4) core contains three tetrahedral sites, one Fe(micro(3)-S)(3)(SR) and two Fe(micro(3)-S)(2)(micro(2)-S)(SR) with normal metric features, and one distorted square planar Ni(micro(3)-S)(2)P(2) site in a Ni(micro(3)-S)(2)Fe face with mean bond lengths Ni-P = 2.147(9) A and Ni-S = 2.29(2) A. The opposite Fe(2)(micro(3)-S)(micro(2)-S) face places the micro(2)-S atom at nonbonding and variable distances (2.60-2.90 A) above the nickel atom. Binding of the strong-field ligand dmpe results in a planar Ni(II) site and deconstruction of the full cubane geometry. The structure approximates that established crystallographically in the C-cluster of C. hydrogenoformans carbon monoxide dehydrogenase whose NiFe(4)S(4) core contains a planar NiS(4) site and three tetrahedral FeS(4) sites in a fragment that is bridged by sulfide atoms to an exo iron atom. M?ssbauer studies of polycrystalline samples containing both clusters 3a and 3b reveal the presence of at least two cluster types. The spectroscopically best defined cluster accounts for ca. 54% of total iron and exhibits hyperfine interactions quite similar to those reported for the S = (5)/(2) state of the protein-bound cubane-type cluster [ZnFe(3)S(4)](1+), whose M?ssbauer spectrum revealed the presence of a high-spin Fe(2+) site and a delocalized Fe(2.5+)Fe(2.5+) pair. Development of reactions leading to a planar nickel and a sulfide-bridged iron atom is requisite to attainment of a synthetic analogue of this complex protein-bound cluster. This work demonstrates a tetrahedral (2) --> planar (3) Ni(II) stereochemical conversion can be effected by binding of ligands that generate a sufficiently strong in-plane ligand field (dmpe = 1,2-bis(dimethylphosphino)ethane, LS(3) = 1,3,5-tris((4,6-dimethyl-3-mercaptophenyl)thio)-2,4,6-tris(p-tolylthio)benzene(3-)).  相似文献   

3.
Several first-row transition metal complexes of the formulation [M(1)(2)](X)(2) {where 1 = Ph(2)PCH(2)CH(2)S(2-C(6)H(4)NH(2)); M = Fe(II), X = BF(4)(-) (2); M = Co(II), X = BF(4)(-) (3), Ni(II), X = ClO(4)(-) (4)} have been prepared by reaction of two equivalents of the new P-S-N ligand Ph(2)PCH(2)CH(2)S(2-C(6)H(4)NH(2)) 1 with one equivalent of the appropriate [M(OH(2))(6)](X)(2) precursor in acetonitrile. In the solid state, complexes 2-4 exist as distorted centrosymmetric octahedral structures featuring facially capping ligands in an all-trans arrangement. Reaction of 2 and 3 with a stream of carbon monoxide (1 atm.) for 5 min in acetonitrile generates iron(II) monocarbonyl species of formulation [Fe(CO)(1)(2)](BF(4))(2)2a, and a cobalt(II) dicarbonyl complex, [Co(CO)(2)(1)(2)](BF(4))(2)3a, which can be isolated in the solid state. Complete removal of CO is achieved by either heating to reflux samples of 2a in acetonitrile for 5 min or by heating solid samples of 3a at 120 °C in vacuo over a period of 4 h. The binding of carbon monoxide is fully reversible for 2 and 3 and can be repeated over multiple cycles. When the same trapping reactions were carried out with very low radiochemical (11)CO concentrations, metal carbonyl species were no longer formed. It is likely that the kinetics of (11)CO adduct formation are too slow to allow for effective trapping under the applied radiochemical conditions.  相似文献   

4.
Synthesis of an analogue of the C-cluster of C. hydrogenoformans carbon monoxide dehydrogenase requires formation of a planar Ni(II) site and attachment of an exo iron atom in the core unit NiFe(4)S(5). The first objective has been achieved by two reactions: (i) displacement of Ph(3)P or Bu(t)()NC at tetrahedral Ni(II) sites of cubane-type [NiFe(3)S(4)](+) clusters with chelating diphosphines, and (ii) metal atom incorporation into a cuboidal [Fe(3)S(4)](0) cluster with a M(0) reactant in the presence of bis(1,2-dimethylphosphino)ethane (dmpe). The isolated product clusters [(dmpe)MFe(3)S(4)(LS(3))](2-) (M = Ni(II) (9), Pd(II) (12), Pt(II) (13); LS(3) = 1,3,5-tris((4,6-dimethyl-3-mercaptophenyl)thio)-2,4,6-tris(p-tolylthio)benzene(3-)) contain the cores [MFe(3)(mu(2)-S)(mu(3)-S)(3)](+) having planar M(II)P(2)S(2) sites and variable nonbonding M...S distances of 2.6-3.4 A. Reaction (i) involves a tetrahedral --> planar Ni(II) structural change between isomeric cubane and cubanoid [NiFe(3)S(4)](+) cores. Based on the magnetic properties of 12 and earlier considerations, the S = (5)/(2) ground state of the cubanoid cluster arises from the [Fe(3)S(4)](-) fragment, whereas the S = (3)/(2) ground state of the cubane cluster is a consequence of antiferromagnetic coupling between the spins of Ni(2+) (S = 1) and [Fe(3)S(4)](-). Other substitution reactions of [NiFe(3)S(4)](+) clusters and 1:3 site-differentiated [Fe(4)S(4)](2+) clusters are described, as are the structures of 12, 13, [(Me(3)P)NiFe(3)S(4)(LS(3))](2-), and [Fe(4)S(4)(LS(3))L'](2-) (L' = Me(2)NC(2)H(4)S(-), Ph(2)P(O)C(2)H(4)S(-)). This work significantly expands our initial report of cluster 9 (Panda et al. J. Am. Chem. Soc. 2004, 126, 6448-6459) and further demonstrates that a planar M(II) site can be stabilized within a cubanoid [NiFe(3)S(4)](+) core.  相似文献   

5.
X-ray structural data for the cubane-type clusters [Mo3CuS4(dmpe)3Cl4](+) and Mo3NiS4(dmpe)3Cl4 (dmpe = 1,2-bis(dimethylphosphino)ethane) with 16 metal electrons have been compared with optimized structural parameters calculated using "ab initio" methodologies. Compound Mo3NiS4(dmpe)3Cl4 crystallizes in the cubic noncentrosymmetric space group P213 with a Mo-Ni distance of 2.647 Angstrom, that is 0.2 Angstrom shorter than the Mo-Cu bond length in the isoelectronic copper cluster. The best agreement between theory and experiments has been obtained using the B3P86 method. In order to validate the B3P86 results, accurate infrared and Raman spectra have been acquired and the vibrational modes associated to the cubane-type Mo3M'S4 (M' = Cu or Ni) unit have been assigned theoretically. The electronic changes taking place when incorporating the M' into the Mo3S4 unit have been analyzed from a theoretical and experimental perspective. The bond dissociation energies between M'-Cl and Mo3S4 fragments show that formation of [Mo3CuS4(dmpe)3Cl4](+) is 135 kcal/mol energetically less favorable than the Ni incorporation. The more robust nature of the Mo3NiS4 fragment has been confirmed by mass spectrometry. The X-ray photoelectron spectroscopy (XPS) spectra of the trimetallic and tetrametallic complexes have been measured and the obtained binding energies compared with the computed electronic populations based on topological approaches of the electron localization function (ELF). The energies and shapes of the Cu 2p and Ni 2p lines indicate formal oxidation states of Cu(I) and Ni(II). However, the reductive addition of nickel into [Mo3S4(dmpe)3Cl3](+) causes a small decrease in the Mo 3d binding energies. This fact prevents an unambiguous assignment of an oxidation state in a conventional way, a circumstance that has been analyzed through the covariance of the electronic populations associated to the C(M') core and V(Mo3Ni) and V(S(2)') valence basins where Mo3NiS4 is a particularly electronically delocalized chemical entity.  相似文献   

6.
Summary Nickel(II) xanthates react with amines to form nickel(II) dithiocarbamates and thiourethanes, both products of nucleophilic substitution at the sp2 carbon atom. If the reaction is conducted under carbon monoxide the nickel and sulphur-containing byproduct of thiourethane formation is transformed partly into Ni(CO)4.  相似文献   

7.
8.
9.
In this study, three novel tetranuclear nickel(II) cubane-type clusters with the general formula [Ni4(L)43-CH3O)4(CH3OH)4] [L: the anion of 5-methyl-2-hydroxybenzaldehyde (1), 2-hydroxypropiophenone (2), and 2-hydroxybenzophenone (3)] were synthesized and characterized by single-crystal X-ray diffraction analysis. The crystal structure of each compound contains a tetranuclear cubane core [Ni4O4] based on an approximately cubic array of altering nickel and oxygen atoms with intracluster metal–metal separations of 3.04–3.14 Å. Each Ni(II) atom is surrounded by two oxygen atoms from the ligand (L) and by the μ3-CH3O oxygen atom that bridges three Ni atoms of the cubane core. The coordination sphere of Ni is completed with one methanol molecule and making six-coordinate with a distorted octahedral geometry. These complexes were characterized also by spectroscopy (IR and UV–Vis). Simultaneous TG/DTG–DTA techniques were used to analyze their thermal behavior under inert atmosphere, with particular attention to determine their thermal degradation pathways, which was found to be a multi-step decomposition accompanied by the release of the ligand molecules. Finally, the kinetic analysis of the decomposition processes was performed for the first step of complex (3), since only this verifies the requirement of applying an isoconversional method like Kissinger–Akahira–Sunose (KAS). For this step, we found the average value E a = 107.8 ± 4.5 kJ mol?1.  相似文献   

10.
Summary The reduction of nickel perchlorate in the presence of carbon monoxide and substituted phosphines or diphosphines has been studied in acetonitrile by cyclic voltammetry. The results show that only mono- and bis-carbonylphosphinenickel(O) complexes are formed, while no evidence for the formation of carbonyl-nickel(I) and -nickel(II) species was obtained. Although the oxidation processes are not reversible, a good correlation between the anodic peak potentials relative to nickel(O) complexes and the -donor--acceptor abilities of the phosphines employed was observed.  相似文献   

11.
Ligand substitution of the triply deprotonated tetrapeptide ligand with bulky α-carbon substituents, in the tetrapeptide complexes of Cu(II) and Ni(II) by the bidentate ligands 2,2-bipyridine and 1,10-phenanthroline has been studied. The mechanism in the CuII(H-3A4)2? and the CuII(H-3F4)2? complexes shows a proton-assisted nucleophilic attack, and the CuII(H-3V4)2? shows both proton-assisted and direct equatorial nucleophilic attack by the bidentate ligands. A factor of ten decrease in the rate of substitution from CuII(H-3A4)2? to CuII(H-3V4)2?, and also CuII(H-3F4)2? is an indication of a steric hindrance on the substitution rate because of atom overcrowding due to the size of the α-carbon substituents in the CuII(H-3V4)2? and CuII(H-3F4)2? complexes. The substitution of the triply deprotonated tetrapeptide ligand in NiII(H-3A4)2? by 2,2-bipyridine and 1,10-phenanthroline shows a kinetic behaviour completely different to that of the Cu(II)-tetrapeptide complexes. Only a direct equatorial nucleophilic attack by the bidentate ligands has been observed.  相似文献   

12.
13.
14.
15.
Summary Vis spectrophotometry has been used to study various ligand substitution equilibria (1) and (2) involving four-coordinate copper(II) and nickel(II) his chelate complexes in methanol, propan-2-ol and toluene. MA2 + HB MAB+HA, K1 (1) MAB + HB MB2 + HA, K2 (2) The Schiff base ligands, HA and HB, which are monobasic and bidentate, represent salicylaldimine type N,O-ligands ( HSA=NR) (1) or pyrrole-2-aldimine type N,N-ligands ( HPA=NR) (2) with different branching at the - or (3-carbon of the organic group R. For both types of ligand the relative thermodynamic stability of their copper and nickel complexes is governed mainly by the steric demands of R, which determine the degree of tetrahedral distortion. The order of stability as given by = K1 K2 is: t-Bu < neo-Pent < i-Pr < i-Bu < Et < n-Pr. The K1/K2 ratio is strongly solvent dependent in the sense that the mixed ligand species MAB is stabilised in toluene relative to methanol. Such a solvent effect is not observed for . The MAB complexes could not be isolated. The vis spectrum of the mixed ligand species Ni(SA=NiPr, SA=NEt) was calculated by computer fitting of the experimental data.  相似文献   

16.
17.
18.
A tetraazamacrocyclic ligand, L, containing six non-equivalent benzene rings, derived from the condensation of benzil with 1,2- diaminobenzene, has been isolated and its complexes [MLCl2] (M = Ni2+ and Cu2+) prepared and characterized by elemental analysis, i.r., u.v.–vis., e.p.r. spectral studies, magnetic moments, redox potentials and conductivity measurements. The complexes have axially elongated octahedral geometries with two axial chlorines, and adopt the trans-configuration. These studies also indicate the covalent nature and the high-spin octahedral structure for these complexes. A cyclic voltammetric investigation reveals that the complexes exhibit a single one-electron redox couple, as anticipated for a copper(II) complex (Cu2+/Cu+) and a single two-electron redox couple for a nickel(II) complex (Ni2+/Ni0). The electrochemical processes are considered quasi-reversible. Antimicrobial activities of the ligand and the complexes have been tested against Bacillus megaterium and Candida tropicallis.  相似文献   

19.
The rates of chloride for triphenylphosphine substitution have been measured in dichloromethane for a series of cyclometalated [Pt(N-N-C)Cl] complexes containing a number of terdentate N-N-C anionic ligands, derived from deprotonated alkyl-, phenyl-, and benzyl-6-substituted 2,2'-bipyridines. These rates have been compared with those of the corresponding [Pt(N-N)(C)Cl] (N-N = 2,2'-bipyridine; C = CH3 or C6H5) complexes having the same set of donor atoms but less constrained arrangements of the ligands. The reactions of the cyclometalated compounds occur as a single-stage conversion from the substrate to the ionic pair [Pt(N-N-C)(PPh3)]Cl products. There is no evidence by 1H and 31P(1H) NMR spectroscopy for the formation of other Pt(II) species or of concurrent ring-opening processes. In contrast, in the monoalkyl- or monoaryl-2,2'-bipyridine complexes, chloride substitution is followed by subsequent slower processes which involve the detachment of one arm of the chelated 2,2'-bipyridine, fast cis to trans isomerization of the cis-[Pt(PPh3)2(eta 1-bipy)(R)]+ transient intermediate, and, eventually, the release of free bipy, yielding trans-[Pt(PPh3)2(R)Cl] (R = Me or Ph). All reactions are first-order with respect to complex and phosphine concentration, obeying the simple rate law kobsd = k2[PPh3]. The values of the second-order rate constant k2 do not seem particularly sensitive to the nature of the bonded organic moiety (alkyl or aryl), to its structure (cyclometalated or not), to the size of the ring, or to the number of alkyl substituents on it. The effects are those foreseen on the basis of an associative mode of activation. The only exception to this pattern of behavior is constituted by the complex [Pt(bipy phi-H)Cl] (bipy phi = 6-phenyl-2,2'-bipyridine), which features a significant rate enhancement with respect to the analogue [Pt(bipy)(Ph)Cl] complex. The results of this work, together with those of a previous paper, suggest that there is not a specific role of cyclometalation in controlling the reactivity, unless an in-plane aryl ring becomes part of the pi-acceptor system of the chelated 2,2-bipyridine, behaving as a cyclometalated analogue of the nitrogen terdentate 2,2':6',2"-terpyridine.  相似文献   

20.
New Ni-containing heterometallic cuboidal cluster aqua complex [W3(NiCl)Se4(H2O)9]3+, the missing link in the family of the M3NiQ4 clusters (M = Mo, W; Q = S, Se), has been prepared by the reaction of [W3Se4(H2O)9]4+ with Ni in 2 M HCl. Single crystals of edge-linked double-cuboidal cluster [{W3NiSe4(H2O)9}2](pts)8.18H2O (pts = p-toluenesulfonate) were grown from the solution of the aqua complex in 3 M Hpts, and their structures were determined. The Ni site in the clusters [W3(NiCl)Q4(H2O)9]3+ selectively coordinates typical pi-acceptor ligands such as CO, olefins, acetylenes, phosphines, arsines, or SnCl3-. This allows stabilization by coordination of such elusive species as HP(OH)2 and As(OH)3. The stability constants for coordination of HP(OH)2, As(OH)3, and SnCl3- were determined. The Se for S substitution increases the stability by 1-2 orders of magnitude. Supramolecular adducts with cucurbit[6]uril (Cuc), [W3(Ni(HP(OH)2))Q4(H2O)9]Cl4.Cuc.11H2O and [W3(NiAs(OH)3)S4(H2O)8Cl]Cl3.Cuc.13H2O, were isolated and structurally characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号