首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 514 毫秒
1.
Asymmetric syntheses of (1R,1R,5R,7R) and (1S,1R,5R,7R)-1-hydroxy-exo-brevicomins 1 and 2, volatiles of the male mountain pine beetle, and a formal synthesis of (+)-exo-brevicomin 3, a component of the attracting pheromone system of several bark beetles have been achieved. The key steps are Birch reduction of commercially available α-picoline, selective Wittig olefination, and Sharpless asymmetric dihydroxylation.  相似文献   

2.
Lidija Pezdirc 《Tetrahedron》2007,63(4):991-999
A library of 15 1,6,7,9-tetrasubstituted 6,7,9,9a-tetrahydro-5H-pyrazolo[1,2-a]pyrrolo[3,4-c]pyrazole-1,3,5(2H,3aH)-triones was prepared by combinatorial stereoselective cycloadditions of (1Z,4R,5R)-1-arylmethylidene-4-benzoylamino-5-phenylpyrazolidin-3-on-1-azomethine imines to N-substituted maleimides. Stereochemistry was controlled by the stereodirecting phenyl group at position-3 and by the ortho-substituents at the aromatic ring at position-1′ in azomethine imines. Consequently, two sets of diastereomeric cycloadducts were obtained, one set from the ortho-unsubstituted dipoles and the other set from the ortho-disubstituted dipoles.  相似文献   

3.
Lidija Pezdirc 《Tetrahedron》2005,61(16):3977-3990
Cycloadditions of (1Z,4R*,5R*)-4-benzoylamino-5-phenylpyrazolidin-3-on-1-azomethine imines to olefinic dipolarophiles were studied. Stereochemistry of cycloadditions to azomethine imines 3 was found to be controlled by stereodirecting phenyl group at position 3, as well as by the ortho-substituents at the aromatic ring at position 1′. The structures of dipoles and products were confirmed by NMR and X-ray diffraction.  相似文献   

4.
To synthesize (3′R,5′S)-3′-hydroxycotinine [(+)-1], the main metabolite of nicotine (2), cycloaddition of C-(3-pyridyl)nitrones 3a, 3c, and 15 with (2R)- and (2S)-N-(acryloyl)bornane-10,2-sultam [(2R)- and (2S)-8] was examined. Among them, l-gulose-derived nitrone 15 underwent stereoselective cycloaddition with (2S)-8 to afford cycloadduct 16, which was elaborated to (+)-1.  相似文献   

5.
Starting from the 1′- or 2′-phenyl-substituted 1-(2′-hydroxyethyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline diastereomers 3 and 6, 4-unsubstituted and 4-(p-nitrophenyl)- and 4-oxo-substituted 1-phenyl- and 2-phenyl-9,10-dimethoxy-2H,4H-1,6,7,11b-tetrahydro-1,3-oxazino[4,3-a]isoquinolines (7-12) were prepared. The relative configurations and the predominant conformations of the products were determined by NMR spectroscopy, by quantum chemical calculations and, for (2R,4S,11bR)-9,10-dimethoxy-4-(p-nitrophenyl)-2-phenyl-2H,4H-1,6,7,11b-tetrahydro-1,3-oxazino[4,3-a]isoquinoline (11), by X-ray diffraction.  相似文献   

6.
(2S,3R,4E,6R)-N-(30-Hydroxytriacontanoyl)-6-hydroxy-4-sphingenine (1) and its (6S)-isomer (1′) were synthesized by starting from pentadecan-15-olide, the enantiomers of 1-pentadecyn-3-ol, and (S)-Garner's aldehyde. Comparison of the 1H NMR spectra of the tetraacetyl derivatives of 1 and 1′ with that of ceramide B, a new protein-bound ceramide in human stratum corneum, revealed it to be (2S,3R,4E,6R)-1.  相似文献   

7.
Optically active (4S,5R)-dihydroisoxazoles 5a-c (90-91% ee) have been prepared by reaction of the epoxyketones 4a-c with hydroxylamine. Reduction of compounds 5a and 5b using lithium aluminium hydride took place exclusively from the Re face to give (1R,2S,3S)-1,3-disubstituted-3-aminopropane-1,2-diols 6a and 6b. These amino-diols were characterised by N-acetylation and the stereochemical sense of the hydride reduction was confirmed by conversion of amides 7a and 7b into α-amino acid derivatives 10a and 10b.  相似文献   

8.
Novel condensation reaction of tropone with N-substituted and N,N′-disubstitued barbituric acids in Ac2O afforded 5-(cyclohepta-2′,4′,6′-trienylidene)pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (8a-f) in moderate to good yields. The 13C NMR spectral study of 8a-f revealed that the contribution of zwitterionic resonance structures is less important as compared with that of 8,8-dicyanoheptafulvene. The rotational barriers (ΔG) around the exocyclic double bond of mono-substituted derivatives 8a-c were obtained to be 14.51-15.03 kcal mol−1 by the variable temperature 1H NMR measurements. The electrochemical properties of 8a-f were also studied by CV measurement. Upon treatment with DDQ, 8a-c underwent oxidative cyclization to give two products, 7 and 9-substituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborates (11a-c·BF4 and 12a-c·BF4) in various ratios, while that of disubstituted derivatives 8d-f afforded 7,9-disubstituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborate (11d-f·BF4) in good yields. Similarly, preparation of known 5-(1′-oxocycloheptatrien-2′-yl)-pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (14a-d) and novel derivatives 14e,f was carried out. Treatment of 14a-c with aq. HBF4/Ac2O afforded two kinds of novel products 11a-c·BF4 and 12a,c·BF4 in various ratios, respectively, while that of 14d-f afforded 11d-f. The product ratios of 11a-c·BF4 and 12a-c·BF4 observed in two kinds of cyclization reactions were rationalized on the basis of MO calculations of model compounds 20a and 21a. The spectroscopic and electrochemical properties of 11a-f·BF4 and 12a-c·BF4 were studied, and structural characterization of 11c·BF4 based on the X-ray crystal analysis and MO calculation was also performed.  相似文献   

9.
Treatment of (1Z,4R,5R)-1-arylmethylidene-4-benzamido-5-phenylpyrazolidin-3-one 1-azomethine imines 4a-d with potassium cyanide in the presence of acetic acid resulted in addition of HCN to the exocyclic CN double bond followed by β-eliminative N-N single bond cleavage (ring opening) to give the N-[(1R,2R)-3-amino-2-benzamido-3-oxo-1-phenylpropyl]benzimidoyl cyanides 6a-d in 28-85% yields. Reaction of dipole 4e with HCN furnished stable intermediate, (1′S,4R,5R)-4-benzamido-1-[cyano(mesityl)methyl]-5-phenylpyrazolidin-3-one (5e), in 76% yield. The structure of compound 6c was determined by X-ray diffraction.  相似文献   

10.
A convergent synthesis of (4R,15R,16R,21S)-rollicosin (1) and (4R,15S,16S,21S)-rollicosin (2) was accomplished. Hydroxy lactone 6a and/or 6b were synthesized from 4-pentyn-1-ol, and α,β-unsaturated lactone 7 was synthesized from γ-lactone 8 and 5-hexen-1-ol. Inhibitory activity of these compounds was examined with bovine heart mitochondrial complex I.  相似文献   

11.
An enantioselective synthesis of sterically congested 1,2-di-tert-butyl and 1,2-di-(1-adamantyl)ethylenediamines has been developed. Thus, diastereomerically pure trans-1-apocamphanecarbonyl-4,5-dimethoxy-2-imidazolidinones 6 and 7 were successfully prepared by optical resolution of (±)-trans-4,5-dimethoxy-2-imidazolidinone using apocamphanecarbonyl chloride (MAC-Cl) followed by stereospecific and stepwise substitution of the dimethoxyl groups using tert-butyl or 1-adamantyl cuprates to provide (4S,5S)-4,5-di-tert-butyl and (4R,5R)-4,5-di-(1-adamantyl)-2-imidazolidinones 12 and 15, respectively. Furthermore, N-acetyl 4,5-di-tert-butyl and 4,5-di-(1-adamantyl)-2-imidazolidinones 16a,b were enantioselectively deacetylated using a catalytic oxazaborolidine system to provide enantiopure 1-p-tolylsulfonyl-4,5-di-tert-butyl-2-imidazolidinones 12 and 19 and 1-p-tolylsulfonyl-4,5-di-(1-adamantyl)-2-imidazolidinones 18 and 20, respectively. Finally, N-p-tolylsulfonyl-2-imidazolidinones 12 and 15 were treated with 30 equiv of Ba(OH)2·8H2O to achieve ring cleavage and to provide (1S,2S)-1,2-di-tert-butylethylenediamine 3 and (1R,2R)-1,2-di-(1-adamantyl)ethylenediamine 4.  相似文献   

12.
A diastereoselective approach to (2R,5S)- and (2S,5S)-2-methyl-1,6-dioxaspiro[4.5]decane 1 and 1a is described. The route starts with an alkylation reaction among the cyclopentanone N,N-dimethylhydrazone 6 and the chiral iodides (R)-3 or (S)-3, derived from the enantiomers of ethyl β-hydroxybutyrate, controlling the estereocenter at C-2 of the molecules. The alkylated products 7 and 7a were easily transformed into the 1,8-O-TBS-1,8-dihydroxy-5-nonanones 9 and 9a in four steps, and a subsequent stereoselective spiroketalization, in acidic media, afforded a Z:E mixture (1:2) of compounds 1 and 1a.  相似文献   

13.
Shin-ichi Naya 《Tetrahedron》2005,61(31):7384-7391
The synthesis and properties of 4,9-methanoundecafulvene [5-(4,9-methanocycloundeca-2′,4′,6′,8′,10′-pentaenylidene)pyrimidine-2,4,6(1,3,5H)-trione] derivatives 8a,b were studied. Their structural characteristics were investigated on the basis of the 1H and 13C NMR and UV-vis spectra. The rotational barrier (ΔG) around the exocyclic double bond of 8a was found to be 12.55 kcal mol−1 by the variable temperature 1H NMR measurement. The electrochemical properties of 8a,b were also studied by CV measurement. Furthermore, the transformation of 8a,b to 3-substituted 7,12-methanocycloundeca[4,5]furo[2,3-d]pyrimidine-2,4(1H,3H)-diones 16a,b was accomplished by oxidative cyclization using DDQ and subsequent ring-opening and ring-closure. The structural details and chemical properties of 16a,b were clarified. Reaction of 16a with deuteride afforded C13-adduct 19 as the single product, and thus, the methano-bridge controls the nucleophilic attack to prefer endo-selectivity. The photo-induced oxidation reaction of 16a and a vinylogous compound, 3-methylcyclohepta[4,5]furo[2,3-d]pyrimidine-2,4(3H)-dione 2a, toward some amines under aerobic conditions were carried out to give the corresponding imines (isolated by converting to the corresponding 2,4-dinitrophenylhydrazones) with the recycling number of 6.1-64.0 (for 16a) and 2.7-17.2 (for 2a), respectively.  相似文献   

14.
The syntheses of (2S,3R,4R,5R) and (2S,3R,4R,5S)-1,6-dideoxy-1,6 iminosugars 1a and 1b, respectively, from d-glucose are described. The key transformations in this reaction sequence include regio-selective epoxide ring opening with N-benzylamine followed by intramolecular reductive amination of amino-aldehyde.  相似文献   

15.
Reactions between the C,C′-dicopper(I) derivative of ortho-carborane and ortho-, meta- and para-diiodobenzene are reported. The reaction with 1,2-C6H4I2 unexpectedly afforded 2,2′-bis(1′-ortho-carboranyl)biphenyl, [HCB10H10CC6H4]22, whereas reactions with 1,3- or 1,4-C6H4I2 provided alternative routes to 1,3-bis(1′-ortho-carboranyl)benzene 3 and 1,4-bis(1′-ortho-carboranyl)benzene 4, respectively. The crystal structure of the biphenyl derivative 2 revealed significant distortions in the biphenylene framework attributable to the proximity of the two bulky carborane cages. UV absorption spectra and electrochemical data on 2 and 3 showed little electronic communication between the two carborane cages in either, and negligible π-conjugation between the two ortho-phenylene rings in 2. However, substantial evidence was found of electronic communication between the carborane cages via the para-phenylene bridge in 4. B3LYP/6-31G computations have been carried out on compounds 2 and 4, on 4,4′-bis(ortho-carboranyl)biphenyl 6 and on 1,2-bis(1′-ortho-carboranyl)benzene 7. Those on 2, 4 and 6 show the computed geometries to be in very good agreement with the experimental geometries: those on 7 allowed the reported molecular geometry of this compound to be revised and revealed a long cage C–C bond of 1.725(3) Å.  相似文献   

16.
Novel dipyrido[1,2-a;3′,4′-d]imidazoles 7a-d, dipyrido[1,2-a;4′,3′-d]imidazoles 8a,c and pyrido[1′,2′;1,2]imidazo[4,5-d]pyridazine derivatives 9a-d were synthesized by two pathways: thermal electrocyclic reaction of 3-alkenylimidazopyridine-2-oximes 10 and direct condensation of ethyl glycinate (or hydrazine) with 2,3-dicarbonylimidazo[1,2-a]pyridines 11.  相似文献   

17.
Daniel Oehlrich 《Tetrahedron》2007,63(22):4703-4711
A 15-step synthesis of (±)-luminacin D from ethyl pent-2-ynoate is reported. The pivotal step involves the formation of the central C-2′/C-3′ bond of the natural product by condensation of the titanium enolate derived from aromatic ketone 1 with aldehyde 2a. A remote asymmetric centre in aldehyde 2a exerts control over the stereochemical course of this reaction, with the major adduct (3a, 54% yield) possessing the required (2′S,3′R,5′R)-stereochemistry. This assignment was unambiguously established by X-ray crystallography of late stage synthetic intermediate, 17. Further manipulation of 3a (six steps) yielded synthetic (±)-luminacin D spectroscopically identical to material isolated from Streptomyces sp. Mer-VD1207 by Naruse et al.  相似文献   

18.
A straightforward synthesis of (2S)-[3,3-2H2]-proline 1c and (2S,3R)- and (2S,3S)-[3-2H1]-proline, 1b and 1a, respectively, has been devised. The key step of the route to the latter compounds involves highly stereoselective hydrolysis of the silyl enol ethers 3 and 3a, respectively, with protonation (deuteriation) from the re-face of the silyl enol ether.  相似文献   

19.
Lithiation of 2-dimethylaminoindene followed by quenching with [(R)-(1,1′-binaphthalene-2,2′-diyl)]chlorophosphite and treatment with triethylamine afforded the crystallographically characterized enantiopure P,N-indene 3 in 71% isolated yield. In the course of rhodium coordination chemistry studies involving 3, the formation of the isolable complex [(κ2-P,N-3)(κ1-P,N-3)RhCl] (7) (81%) was observed, thereby confirming the propensity of this new ligand to form LnRh(3)2 complexes. Such coordination chemistry behavior may contribute in part to the generally poor catalytic performance exhibited by mixtures of 3 and rhodium precursor complexes in the asymmetric hydrogenation and hydrosilylation studies described herein.  相似文献   

20.
Chiral tetrahydropentalenes (3aR,6aR)-1 have been prepared and used as ligands in the Rh-catalyzed 1,4-addition of 1-alkenylboronic acids to cyclic enones 5. It has been discovered that the stereochemistry of the reaction was controlled by the steric properties of the aryl groups in 1 rather than their electronic nature. In the vinylation with (E)-2-phenylethenylboronic acid 5, ligands (3aR,6aR)-1 provided enantioselectivity up to 87% ee and gave high yields of ethenylketones 6 in the presence of 1 (6.6 mol %). The configuration of all ketone products obtained with (3aR,6aR)-1 is (S). Rh-catalyzed reaction of cyclopentenone 4a and (Z)-propenylboronic acid 7 in the presence of ligands (3aR,6aR)-1 yielded at 50 °C an inseparable mixture of (Z)- and (E)-ketones 8 with (Z)-8 as the major product and both in only moderate enantiomeric excess.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号