首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Molecular electronic devices that utilize single molecules or molecular monolayers as active electronic components represent a promising approach in the ongoing miniaturization and integration of electronic devices. Rapid advances in technology have enabled us to engineer molecular electronic devices with diverse functionalities. Significant progress has been made in understanding charge transport in molecular systems at the single-molecule level, and concomitantly, new device concepts have emerged. This review article focuses on experimental aspects of electronic devices made with single molecules or molecular monolayers, with a primary focus on the characterization and manipulation of charge transport.  相似文献   

2.
周建林  牛巧利 《中国物理 B》2010,19(7):77305-077305
This paper reports that the n-type organic thin-film transistors have been fabricated by using C60 as the active layer and polystyrene as the dielectric.The properties of insulator and the growth characteristic of C60 film were carefully investigated.By choosing different source/drain electrodes,a device with good performance can be obtained.The highest electron field effect mobility about 1.15 cm 2 /(V·s) could reach when Barium was introduced as electrodes.Moreover,the C60 transistor shows a negligible 'hysteresis effect' contributed to the hydroxyl-free of insulator.The result suggests that polymer dielectrics are promising in applications among n-type organic transistors.  相似文献   

3.
Choosing closed-ended armchair (5, 5) single-wall carbon nanotubes (CCNTs) as electrodes, we investigate the electron transport properties across an all-carbon molecular junction consisting of C20 molecules suspended between two semi-infinite carbon nanotubes. It is shown that the conductances are quite sensitive to the number of C20 molecules between electrodes for both configuration CF1 and double-bonded models: the conductances of C20 dimers are markedly smaller than those of monomers. The physics is that incident electrons easily pass the C20 molecules and are predominantly scattered at the C20-C20 junctions. Moreover, we study the doping effect of such molecular junction by doping nitrogen atoms substitutionally. The bonding property of the molecular junction with configuration CF1 has been analysed by calculating the Mulliken atomic charges. Our results have revealed that the C atoms in N-doped junctions are more ionic than those in pure-carbon ones, leading to the fact that N-doped junctions have relatively large conductance.  相似文献   

4.
We study molecular transistors where graphene nanoribbons act as three metallic electrodes connected to a ring-shaped 18-annulene molecule. Using the nonequilibrium Green function formalism combined with density functional theory, recently extended to multiterminal devices, we show that these nanostructures exhibit exponentially small transmission when the source and drain electrodes are attached in a configuration with destructive interference of electron paths around the ring. The third electrode, functioning either as an attached infinite-impedance voltage probe or as an "air-bridge" top gate covering half of molecular ring, introduces dephasing that brings the transistor into the "on" state with its transmission in the latter case approaching the maximum limit for a single conducting channel device. The current through the latter device can also be controlled in the far-from-equilibrium regime by applying a gate voltage.  相似文献   

5.
Three-dimensional(3D)vertical architecture transistors represent an important technological pursuit,which have distinct advantages in device integration density,operation speed,and power consumption.However,the fabrication processes of such 3D devices are complex,especially in the interconnection of electrodes.In this paper,we present a novel method which combines suspended electrodes and focused ion beam(FIB)technology to greatly simplify the electrodes interconnection in 3D devices.Based on this method,we fabricate 3D vertical core-double shell structure transistors with ZnO channel and Al2O3 gate-oxide both grown by atomic layer deposition.Suspended top electrodes of vertical architecture could be directly connected to planar electrodes by FIB deposited Pt nanowires,which avoid cumbersome steps in the traditional 3D structure fabrication technology.Both single pillar and arrays devices show well behaved transfer characteristics with an Ion/Ioff current ratio greater than 106 and a low threshold voltage around 0 V.The ON-current of the 2×2 pillars vertical channel transistor was 1.2μA at the gate voltage of 3 V and drain voltage of 2 V,which can be also improved by increasing the number of pillars.Our method for fabricating vertical architecture transistors can be promising for device applications with high integration density and low power consumption.  相似文献   

6.
Electrochemical double-layer capacitors, or ‘supercapacitors’ are attracting increasing attention as high-power energy storage devices for a wide range of technological applications. These devices store charge through electrostatic interactions between liquid electrolyte ions and the surfaces of porous carbon electrodes. However, many aspects of the fundamental mechanism of supercapacitance are still not well understood, and there is a lack of experimental techniques which are capable of studying working devices. Recently, solid-state NMR has emerged as a powerful tool for studying the local environments and behaviour of electrolyte ions in supercapacitor electrodes. In this Trends article, we review these recent developments and applications. We first discuss the basic principles underlying the mechanism of supercapacitance, as well as the key NMR observables that are relevant to the study of supercapacitor electrodes. We then review some practical aspects of the study of working devices using ex situ and in situ methodologies and explain the key advances that these techniques have allowed on the study of supercapacitor charging mechanisms. NMR experiments have revealed that the pores of the carbon electrodes contain a significant number of electrolyte ions in the absence of any charging potential. This has important implications for the molecular mechanisms of supercapacitance, as charge can be stored by different ion adsorption/desorption processes. Crucially, we show how in situ NMR experiments can be used to quantitatively study and characterise the charging mechanism, with the experiments providing the most detailed picture of charge storage to date, offering the opportunity to design enhanced devices. Finally, an outlook for future directions for solid-state NMR in supercapacitor research is offered.  相似文献   

7.
Ferroelectric field-effect transistors using ZnO:Li films simultaneously as a transistor channel and as a ferroelectric active element have been prepared and studied. We show an opportunity of using the ferroelectric field-effect transistor based on ZnO:Li films in ZnO:Li/LaB6 heterostructure as a bistable memory element for information recording. The proposed structure of a ferroelectric memory cell does not possess the fatigue under repeated readout of single recorded information that will allow increasing the resource of storage devices essentially.  相似文献   

8.
俎凤霞  张盼盼  熊伦  殷勇  刘敏敏  高国营 《物理学报》2017,66(9):98501-098501
传统硅基半导体器件受到了量子尺寸效应的限制,发展分子电子学器件有可能解决这一难题.本文提出了由石墨烯电极和有机噻吩分子相结合构造分子器件的思想,建构了"石墨烯-噻吩分子-石墨烯"结构的分子器件,并运用非平衡态格林函数结合密度泛函理论的方法研究了其电输运特性.系统地分析了电子给体"氨基"和电子受体"硝基"两种取代基的位置对有机噻吩分子电输运的影响.计算表明,有机噻吩二聚物被"氨基"和"硝基"取代后会产生明显的负微分电阻效应和整流效应.进一步对产生这些效应的物理机制进行分析,发现氨基的位置可以调整负微分电阻的强弱,硝基的位置可以改变整流的方向.  相似文献   

9.
The junctionless nanowire metal–oxide–semiconductor field‐effect transistor (JNT) has recently been proposed as an alternative device for sub‐20‐nm nodes. The JNT architecture eliminates the need for forming PN junctions, resulting in simple processing and competitive electrical characteristics. In order to further boost the drive current, alternative channel materials such as III–V and Ge, have been proposed. In this Letter, JNTs with Ge channels have been fabricated by a CMOS‐compatible top–down process. The transistors exhibit the lowest subthreshold slope to date for JNT with Ge channels. The devices with a gate length of 3 μm exhibit a subthreshold slope (SS) of 216 mV/dec with an ION/IOFF current ratio of 1.2 × 103 at VD = –1 V and drain‐induced‐barrier lowering (DIBL) of 87 mV. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We study the quantum wave transport in nanoscale field-effect transistors. It has been shown that the tunneling effect between the source and the drain in an ultra-short channel transistor significantly degrades the control of the drain current by the gate. However, the tunneling effect is suppressed by reducing the depth of the source and drain junctions which is designated to suppress the short-channel effects concerning the cut-off characteristics of the field-effect transistor. The reduced junction depth confines the carriers in the direction (y -direction) perpendicular to the transport direction (x -direction). The matching of y -direction wavefunctions at regional boundaries suppresses the tunneling effect and normal FET current–voltage characteristics has been obtained, which explains theoretically the successful fabrication of nanoscale field-effect transistors.  相似文献   

11.
Tuning the charge transport through a metal-molecule-metal junction by changing the interface properties is widely studied and is of paramount importance for applications in molecular electronic devices. We used current sensing atomic force microscopy (CSAFM) as a tool to study the contact resistance of metal-molecule-metal (MmM) junctions formed by sandwiching self-assembled monolayers (SAMs) of alkanethiols with various end groups (-CH3, -OH and -NH2) between Au(1 1 1) substrates and Au coated AFM tips. The effect of interface chemistry on charge transport through such SAMs with varying end groups was studied in an inert, non-polar liquid (hexadecane) environment. We find that the contact resistances of these MmM junctions vary significantly based on the end group chemistry of the molecules.  相似文献   

12.
通过将有机空穴阻挡材料BCP薄层插入垂直构型有机发光晶体管器件ITO/NPB(40nm)/Al(30nm)/NPB(20nm)/Alq3(55nm)/Al中的不同位置对器件光电特性的影响来研究器件漏电流较大的原因以及器件中具体的载流子过程.充分证明了栅极注入的空穴对沟道中的电流有贡献.进而通过用LiF薄层修饰漏极来增强电子的注入并减小漏电流,得到了相对稳定的发光晶体管器件,其发光强度有很大提高并可很好地由栅极电压来进行调控.更换发光材料层容易得到不同颜色的发光晶体管. 关键词: 垂直构型有机发光晶体管(VOLET) 静电感应晶体管(SIT) N')" href="#">NPB (N N′-diphenyl-N')" href="#">N′-diphenyl-N N′-bis(1-naphtyl)-1')" href="#">N′-bis(1-naphtyl)-1 1′-biphenyl-4  相似文献   

13.
ABSTRACT

We examined the electrical conduction through single-molecular junctions comprising of anthracenedithiol molecule coupled to two gold electrodes having ?1,0,1?, ?1,1,0? and ?1,1,1? crystallographic orientations. Owing to this jellium model, we evaluated the values of current and conductance using non-equilibrium Green's functions combined with extended Huckel theory. This data was further interpreted in terms of transmission spectra, density of states and their molecular orbital analysis for zero bias. We evinced the oscillating conductance in all three cases, due to the oscillation of orbital energy relative to Fermi level. Our detailed analysis suggested that electrode orientation can tune the molecule–electrode coupling and hence conduction. Anthracene molecular junction with ?1,1,0? orientation displayed favourable conduction, when compared to the other two orientations, thus can provide us an insight while designing futuristic molecular electronic devices.  相似文献   

14.
A nanostructure based on a uniform one-dimensional array of ultrasmall tunnel junctions (a single-electron trap) characterized by an ability to maintain an excess charge of several electrons in an island is fabricated and investigated. Changes in the state of the trap are detected by a single-electron transistor. At the working temperature T=35 mK the storage time of a charge state is more than 8 h (which is the duration of the experiment). It is demonstrated that the possible factors limiting the lifetime of a state at temperatures below the typical temperatures for thermal activation include the influence of the random distribution and drift of the effective background charges of the metal islands, as well as the reverse influence discovered here of the transistor on the trap. As the current passing through the transistor increases, the hysteresis loop in the dependence of the charge in the trap on the control voltage narrows. It is noted that an increase in the current from 5 to 300 nA is equivalent to raising the working temperature to 250 mK. Zh. éksp. Teor. Fiz. 111, 344–357 (January 1997)  相似文献   

15.
The development of molecular electronic switching devices for memory and computing applications presents one of the most exciting contemporary challenges in nanoscience and nanotechnology. One basis for such a device is a two-terminal molecular-switch tunnel junction that can be electrically switched between high- and low-conductance states. Towards this end, the concepts of self-assembly and molecular recognition have been pursued actively for synthesizing two families of redox-controllable mechanically interlocked molecules – bistable catenanes and bistable rotaxanes – as potential candidates for solid-state molecular-switch tunnel junctions. This article reviews logically the development and understanding of Langmuir, Langmuir–Blodgett and self-assembled monolayers of amphiphilic bistable and functionalized bistable rotaxanes and their catenanes counterparts. Our increased understanding of the superstructures of these monolayers has guided our recent efforts to incorporate these self-organized molecular switches into devices. The methodologies that are being employed are in their early stages of development. Certain characteristics of the molecules, monolayers, electrodes and devices are emerging that serve as lessons to be consider in responding to the ample opportunities for further research and process development in the field of nanoelectronics. PACS 81.07.-b; 81.07.Nb; 85.65.+h  相似文献   

16.
Magnetic tunnel junctions with ferroelectric barriers, often referred to as multiferroic tunnel junctions, have been proposed recently to display new functionalities and new device concepts. One of the notable predictions is that the combination of two charge polarizing states and the parallel and antiparallel magnetic states could make it a four resistance state device. We have recently studied the ferroelectric tunneling using a scanning probe technique and multiferroic tunnel junctions using ferromagnetic La0.7Ca0.3MnO3 and La0.7Sr0.3MnO3 as the electrodes and ferroelectric (Ba, Sr)TiO3 as the barrier in trilayer planner junctions. We show that very thin (Ba, Sr)TiO3 films can sustain ferroelectricity up till room temperature. The multiferroic tunnel junctions show four resistance states as predicted and can operate at room temperatures.  相似文献   

17.
Hydrogenated microcrystalline silicon has recently emerged as a promising material system for large-area electronic applications such as thin-film transistors and solar cells. In this paper, thin-film transistors based on microcrystalline silicon were realized with charge carrier mobilities exceeding 40 cm2/Vs. The electrical characteristics of the microcrystalline silicon thin-film transistors are limited by the influence of contact effects. The influence of the contact effects on the charge carrier mobility was investigated for transistors with different dimensions of the drain and source contacts. The experimental results were compared to an electrical model which describes the influence of the drain and source contact dimension on the transistor parameters. Furthermore, the Transmission Line Method was applied to investigate the contact effects of the thin-film transistors with different drain and source contact dimensions. Finally, optimized device geometries like the channel length of the transistor and dimension of the drain and source contacts were derived for the microcrystalline transistors based on the electrical model.  相似文献   

18.
The conductance of a family of ruthenium-quasi cumulene-ruthenium molecular junctions including different numbers of carbon atoms, both in even numbers and odd numbers, are investigated using a fully self-consistent ab initio approach which combines the non-equilibrium Green’s function formalism with density functional theory. Our calculations demonstrate that although the overall transport properties of the Ru-quasi cumulene-Ru junctions with an even number of carbon atoms are different from those of the junctions with an odd number of carbon atoms, the difference between the corresponding current-voltage (I–V) characteristics of these molecular junctions declines to lesser than 16% when the voltage goes up. In each group, the molecular junctions give a large transmission around the Fermi level since the Ru-C π bonds can extend the π conjugation of the carbon chains into the Ru electrodes, and their I–V characteristics are almost linear and independent of the chain length, illustrating potential applications as conducting molecular wires in future molecular electronic devices and circuits.   相似文献   

19.
《Current Applied Physics》2018,18(3):324-328
We report the fabrication of single-walled carbon nanotube (SWCNT) network transistors by ferroelectric Pb(Zr0.4Ti0.6)O3 (PZT) bottom-gating and investigate the polarization effects of PZT on the transport properties of the transistor device. Our devices exhibit typical p-channel transistor characteristics and a large hysteresis loop with high ON/OFF current ratio and large ON current as well as memory window (MW) measured up to 5.2 V. The origin of clockwise hysteresis is attributed to ferroelectric polarization modulated charge trapping/de-trapping process in the interface states between SWCNT networks and PZT. The retention time about 104s with two high stable current states preliminarily demonstrates great potential for future non-volatile memory applications based on such SWCNT/PZT hybrid systems.  相似文献   

20.
研究了基于石墨烯电极的蒽醌分子器件的开关特性.分别选取了锯齿型和扶手椅型的石墨烯纳米带作为电极,考虑蒽醌基团在氧化还原反应下的两种构型,即氢醌(HQ)分子和蒽醌(AQ)分子,构建了双电极分子结,讨论了氧化还原反应和不同的电极结构对蒽醌分子器件开关特性的影响.研究发现,无论是锯齿型石墨烯电极还是扶手椅型石墨烯电极,HQ构型的电流都明显大于AQ构型的电流,即在氧化还原反应下蒽醌分子呈现出显著的开关特性.同时,当选用锯齿型石墨烯电极时其开关比最高能达到3125,选用扶手椅型石墨烯电极时开关比最高能达到1538.此外,当HQ构型以扶手椅型石墨烯为电极时,在0.7-0.75 V之间表现出明显的负微分电阻效应.因此该系统在未来分子开关器件领域具有潜在的应用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号