首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A novel dual‐retention mechanism mixed‐mode stationary phase based on silica gel functionalized with PEG 400 and succinic anhydride as the ligand was prepared and characterized by infrared spectra and elemental analysis. Because of the ligand containing PEG 400 and carboxyl function groups, it displayed hydrophobic interaction chromatography (HIC) characteristic in a high‐salt‐concentration mobile phase, and weak cation exchange chromatography (WCX) characteristic in a low‐salt‐concentration mobile phase. As a result, it can be employed to separate proteins with both WCX and HIC modes. The resolution and selectivity of the stationary phase was evaluated under both HIC and WCX modes with protein standards, and its performance was comparable to that of conventional ion‐exchange chromatography and HIC columns. The results indicated that the novel dual‐retention mechanism column, in many cases, could replace two individual WCX and HIC columns as a ‘2D column’. In addition, the mixed retention mechanism of proteins on this ‘2D column’ was investigated with stoichiometric displacement theory for retention of solute in liquid chromatography in detail in order to understand why the dual‐retention mechanism column has high resolution and selectivity for protein separation under WCX and HIC modes, respectively. Based on this ‘2D column’, a new 2DLC technology with a single column was developed. It is very important in proteome research and recombinant protein drug production to save column expense and simplify the processes in biotechnology. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
李蓉  邸泽梅  陈国亮 《色谱》2001,19(5):385-389
 系统研究了流动相中盐的性质和浓度、溶液 pH以及竞争配体对蛋白质在金属螯合色谱中保留值的影响。导出了描述蛋白质在金属螯合色谱中保留特征的数学表达式 ,提出用洗脱强度指数ε表征盐溶液的洗脱能力。根据不同色谱条件下蛋白质的保留特性 ,发现蛋白质在金属螯合色谱中的保留是配位、静电和疏水的协同作用。对与蛋白质强结合的金属螯合柱 ,以配位作用为主 ,静电作用为辅 ;对弱结合的金属柱 ,以静电作用为主 ,配位作用为辅。在流动相中加入高浓度非成络盐 ,可增强蛋白质和固定相间的疏水作用。  相似文献   

3.
L. Szepesy  V. Háda 《Chromatographia》2001,54(1-2):99-108
Summary Eight commercially available reversed-phase (RP) columns of widely different characteristics were evaluated and compared using the linear solvation energy relationships (LSER). Retention factors of 32 solutes of different types were determined under isocratic conditions using an acetonitrile-water (30∶70) mobile phase. Stationary phase properties were compared by the fitting coefficients of the LSER-based regression equations which are characteristic of the individual stationary phases and represent the extent of various molecular interactions contributing to the retention process. The good agreement between the calculated and measured logk values for different type of compounds support the adequacy and applicability of the LSER model to describe chromatographic retention. Characterization of column performance for the separation of various type of compounds was established by the determination of the different selectivity factors representing hydrophobic selectivity, polar selectivity and specific selectivity.  相似文献   

4.
Abstract

Various microparticulate siliceous bonded stationary phases having weakly hydrophobic ligates were developed for HPLC of proteins and t-RNA's by hydrophobic interaction chromatography (HIC). It was confirmed that optimal separation of different types of biopolymers can be obtained by using a set of stationary phases having appropriate hydrophobic properties. Thus, the separation of t-RNA's is best carried out on stationary phases which are more hydrophobic than those optimal for HIC of proteins. Plots of log k' of both proteins and t-RNA's against the salt molality in the eluent yielded straight lines at sufficiently high salt concentrations in the eluent. The limiting slopes represent the hydrophobic interaction parameter for the particular chromatographic system and can serve as measures of the hydrophobic character of either the biopolymer or the stationary phase. Stationary phases with covalently bound polyether chains at the surface were found to be most suitable for HIC of proteins and t-RNA's.  相似文献   

5.
王建山  夏红军  万广平  刘家玮  白泉 《色谱》2016,34(12):1228-1233
以硅胶为基质、氨基己酸为配基制备了一种新型弱阳离子交换/疏水(WCX/HIC)双功能混合模式色谱固定相。该固定相配基具有一定的疏水性且含有羧基,在高盐浓度下表现为HIC的性质,可作为HIC固定相使用;在低盐浓度条件下表现为离子交换的性质,可作为WCX固定相使用。分别考察了该介质在WCX和HIC两种模式下对标准蛋白质的分离性能,并与商品柱进行比较。结果表明,所合成的WCX/HIC双功能固定相在WCX和HIC两种模式下对蛋白质均有较高的分离度和选择性,且分离能力与商品柱相当,两种模式下标准蛋白质的质量和活性回收率均大于93%,表明该柱具有“一柱二用”的功能,适于生物大分子的分离纯化。基于此双功能色谱柱构建的在线单柱二维液相色谱(2DLC-1C)可在60 min内实现8种蛋白质的快速分离。在70 min内完成了对蛋清中溶菌酶的二维纯化,纯度可达到98.3%。该技术中一根色谱柱可当作两根色谱柱使用,对蛋白质组学研究和重组蛋白药物的生产具有重要的应用价值。  相似文献   

6.
选取了四种常用的弱阳离子交换(WCX)商品柱以研究标准蛋白在其上的色谱保留行为。发现在疏水色谱(HIC)模式下,蛋白在这四种WCX商品柱上也有不同程度的保留特征,且洗脱曲线呈现出保留值随盐浓度变化的"U"型。从分子力学角度定性解释了因疏水相互作用力的存在影响了蛋白在WCX色谱柱上洗脱顺序的改变。运用计量置换理论(SDT)中的两组线性方程进一步证实了WCX和HIC中蛋白与固定相间相互作用力的性质,在HIC中为非选择性作用力,而在离子交换色谱(IEC)中为选择性作用力。这四种色谱柱中的两种事实上可在WCX和HIC两种模式下,对标准蛋白进行分离且有较好的分离效果,有可能作为二维色谱柱来使用。  相似文献   

7.
赵建国  姚丛  卫引茂  耿信笃 《色谱》2001,19(6):481-184
 首次研究了疏水作用色谱 (HIC)中芳香醇同系物在不同种类盐流动相中的保留行为。以计量置换保留模型中的参数Z分析了HIC中小分子与生物大分子保留行为的差别 ,以及不同流动相组成对两种类型溶质的洗脱范围及洗脱能力的影响。与反相色谱相似 ,芳香醇在HIC中的保留仍存在同系物规律。比较了小分子和生物大分子在不同盐溶液中的Z值变化 ,表明流动相中的盐仅改变小分子与固定相的水合程度 ,而对生物大分子 ,除改变其和固定相水合程度外 ,还会影响生物大分子与固定相接触区的分子构象  相似文献   

8.
The effect of ionic composition of mobile phase on retention and chromatographic separation of optical isomers of several derivatives of 2-arylpropanoic acid on a chiral stationary phase Diaspher-Chiralsel-E with a grafted eremomycin antibiotic was studied. As was shown, the mechanism of retention differs from that for hydrophobic reverse-phase adsorbents, as it involves a substantial ion-exchange component that determines the nonmonotonic dependence of the retention factor and the enantioselectivity on eluent pH. The effect of the concentration of buffer salt in the eluent on the chromatography of this class of compounds is discussed.  相似文献   

9.
The effect of electrostatic and hydrophobic interactions on the chromatographic behavior of biopolymers with the use of chemically bonded silica-based HPLC columns and aqueous buffered mobile phases containing neutral salts in a wide range of concentration is discussed. Two columns packed with stationary phases appositely designed for biopolymer HPLC in size exclusion and anion exchange mode, respectively, are examined. Experimental data are evaluated by plotting the measured isocratic elution volumes of several standard proteins of different isoelectric point against the salt concentration in the mobile phase. Depending on the concentration and nature of salt, both columns exhibit different domains where either sieving effect or electrostatic or hydrophobic interactions are predominant. At sufficiently low salt concentrations electrostatic interactions are predominant leading to either increasing or decreasing elution volumes depending on the sign of the charges on the stationary phase and the protein, respectively. On the other hand, at high salt concentrations of a salt with sufficiently high molal surface tension increment proteins may be retained by hydrophobic interactions.  相似文献   

10.
The retention behavior of a large group of analytes (35) with varied properties (pKa and logP) was studied on eight hydrophilic interaction LC columns with different surfaces, stationary phase chemistries, and types of particles. The acetonitrile content (5–95%), buffer concentration (0.5–200 mM), and pH of the mobile phase (3.8 and 6.8) were evaluated for their effects on the retention behavior. The type of stationary phase had a significant impact on the selectivity and retention time of the tested analytes. Completely different selectivity was observed on the aminopropyl stationary phase. In this study, the influence of the buffer concentration was similar for all tested columns, except for the aminopropyl stationary phase. Increasing the buffer concentration led to decreased retention times for the basic compounds and increased retention times for the acidic compounds, while the inverse behavior was observed on the aminopropyl stationary phase. The selectivity of the individual stationary phases was evaluated at pH 3.8 and 6.8. Much lower selectivity differences between the stationary phases were observed at pH 6.8 than pH 3.8. Bare silica stationary phases were used in the comparison of the particles (fused‐core and fully porous particles of 3 and 1.7 μm) and the columns provided by different manufacturers.  相似文献   

11.
In this study, 3‐diethylamino‐1‐propyne was covalently bonded to the azide‐silica by a click reaction to obtain a novel dual‐function mixed‐mode chromatography stationary phase for protein separation with a ligand containing tertiary amine and two ethyl groups capable of electrostatic and hydrophobic interaction functionalities, which can display hydrophobic interaction chromatography character in a high‐salt‐concentration mobile phase and weak anion exchange character in a low‐salt‐concentration mobile phase employed for protein separation. As a result, it can be employed to separate proteins with weak anion exchange and hydrophobic interaction modes, respectively. The resolution and selectivity of the stationary phase were evaluated in both hydrophobic interaction and ion exchange modes with standard proteins, respectively, which can be comparable to that of conventional weak anion exchange and hydrophobic interaction chromatography columns. Therefore, the synthesized weak anion exchange/hydrophobic interaction dual‐function mixed‐mode chromatography column can be used to replace two corresponding conventional weak anion exchange and hydrophobic interaction chromatography columns to separate proteins. Based on this mixed‐mode chromatography stationary phase, a new off‐line two‐dimensional liquid chromatography technology using only a single dual‐function mixed‐mode chromatography column was developed. Nine kinds of tested proteins can be separated completely using the developed method within 2.0 h.  相似文献   

12.
Abstract

The retention behavior of some organic anions in the presence of tetralkyl ammonium ions in the mobile phase is analized under conditions where these hydrophobic counterions do adsorb on the surface of a reversed-phase packing. The study comprises the effects of the counterion concentration in the mobile and in the stationary phase, the salt concentration in the eluent and the salt type. Experimental results are discussed in view of previously proposed mechanisms and 2 simple two-member expression relating corrected capacity factor to adsorbed counterion concentration is deduced. The retention model indicates that solute is present in the stationary phase at two different levels; first into a diffuse ionic cloud associated electrically to the ionic surface and, second, at the surface of the packing where it forms ion pairs with the adsorbed counterions.  相似文献   

13.
介绍了不同孔径的大孔硅胶基质的制备,二醇基和氨基固定相的合成,及其蛋白质的分离特性。探讨了流动相中的盐浓度和pH对蛋白质保留时间的影响,以及在此两种固定相上蛋白质分离机理的比较。由于大孔填料具有小的比表面积、往容量也低,从而有利于作蛋白质等生物大分子的高效快速分离分析。  相似文献   

14.
The separation of a mixture of neutral, strongly acidic and strongly basic compounds was studied in hydrophilic interaction chromatography using a bare silica phase, and bonded silica phases with diol, zwitterionic, amide and hydrophilic/hydrophobic groups. The mobile phase was acetonitrile–ammonium formate buffer at low pH. Differences in selectivity between these various columns indicate that the stationary phase cannot function merely as an inert support for a water layer into which the solutes partition from the bulk mobile phase. Attempts to fit the retention data to equations which describe either partition or adsorption mechanisms were inconclusive. Ion exchange was a significant contributor to the retention of ionised bases on all columns studied. Van Deemter plots indicated that the efficiency as a function of flow rate varied between the columns, which might be attributable in part to the presence of either monomeric or polymeric bonded phase layers.  相似文献   

15.
Using four commercial weak anion-exchange chromatography (WAX) columns and 11 kinds of different proteins, we experimentally examined the involvement of hydrophobic interaction chromatography (HIC) mechanism in protein retention on the WAX columns. The HIC mechanism was found to operate in all four WAX columns, and each of these columns had a better resolution in the HIC mode than in the corresponding WAX mode. Detailed analysis of the molecular interactions in a chromatographic system indicated that it is impossible to completely eliminate hydrophobic interactions from a WAX column. Based on these results, it may be possible to employ a single WAX column for protein separation by exploiting mixed modes (WAX and HIC) of retention. The stoichiometric displacement theory and two linear plots were used to show that mechanism of the mixed modes of retention in the system was a combination of two kinds of interactions, i.e., nonselective interactions in the HIC mode and selective interactions in the IEC mode. The obtained U-shaped elution curve of proteins could be distinguished into four different ranges of salt concentration, which also represent four retention regions.  相似文献   

16.
The enantioseparation of four phthalimide derivatives (thalidomide, pomalidomide, lenalidomide and apremilast) was investigated on five different polysaccharide-type stationary phases (Chiralpak AD, Chiralpak AS, Lux Amylose-2, Chiralcel OD and Chiralcel OJ-H) using neat methanol (MeOH), ethanol (EtOH), 1-propanol (PROP), 2-propanol (IPA) and acetonitrile (ACN) as polar organic mobile phases and also in combination. Along with the separation capacity of the applied systems, our study also focuses on the elution sequences, the effect of mobile phase mixtures and the hysteresis of retention and selectivity. Although on several cases extremely high resolutions (Rs > 10) were observed for certain compounds, among the tested conditions only Chiralcel OJ-H column with MeOH was successful for baseline-separation of all investigated drugs. Chiral selector- and mobile-phase-dependent reversals of elution order were observed. Reversal of elution order and hysteresis of retention and enantioselectivity were further investigated using different eluent mixtures on Chiralpak AD, Chiralcel OD and Lux Amylose-2 column. In an IPA/MeOH mixture, enantiomer elution-order reversal was observed depending on the eluent composition. Furthermore, in eluent mixtures, enantioselectivity depends on the direction from which the composition of the eluent is approached, regardless of the eluent pair used on amylose-based columns. Using a mixture of polar alcohols not only the selectivities but the enantiomer elution order can also be fine-tuned on Chiralpak AD column, which opens up the possibility of a new type of chiral screening strategy.  相似文献   

17.
A number of different stationary phases designed for hydrophobic interaction chromatography have been examined to assess their efficiency and resolving capability with respect to protein and peptide mixtures. A packing with an ether-bonded phase was substantially less hydrophobic than those with propyl- or phenyl-bonded surface chemistry. While the overall efficiencies of most columns were broadly similar with respect to most proteins, some proteins did chromatograph with enhanced efficiency on specific packings. The elution order of individual proteins was, with one or two exceptions, similar for all columns tested using comparable mobile phases. It differed, however, substantially from orders obtained with conventional reversed-phase alkyl-bonded phases and from the elution orders obtained when the hydrophobic packings were used in a reversed-phase mode, i.e. with an organic modifier gradient. Varying the salt used in the mobile phase and its pH under hydrophobic interaction conditions (high ionic strength) changed overall retentivities and also altered specific retention orders, thus offering possibilities of selective resolution of some mixtures.  相似文献   

18.
Mixed mode stationary phases with ion-pairing reagent (acidic or basic) as integral part of hydrophobic chain offers unique selectivity, and hence, are ideal for multidimensional separations. The retention of hydrophobic components is a function of organic content, whereas that of charged species is a function of organic content, ionogenic modifier and its level in the mobile phase. Hence, by controlling the parameters influencing component retention (stationary phase and mobile phase), the selectivity of chemical components in the two-dimensional plane can be manipulated to improve the separation. A two-dimensional liquid chromatograph has been developed by coupling similar and dissimilar mixed mode stationary phases in the two dimensions. This technique has immense potential in resolving co-eluting components as the retention mechanism in the two-dimensions are complementary. However, with only part of the primary column eluent sampled into the secondary column, the technique is limited to qualitative analysis.  相似文献   

19.
In this work, based on the structural characteristics of bio‐membrane molecules, a novel type of high‐performance hydrophobic interaction chromatography stationary phase was prepared using cholesterol as a ligand. Investigating the separation performance of this stationary phase, the effect of pH and salt concentration of the mobile phase on the retention time, the absorption capacity, and the hydrophobic ability revealed that this stationary phase had a high loading capacity and moderate hydrophobic interactions compared with four different hydrophobic interaction chromatography stationary phase ligands. Five types of standard proteins could be baseline separated with a great selection for protein separation. When 3.0 M urea was added to the mobile phase, it could be refolded with simultaneous purification of denatured lysozyme by one‐step chromatography. The mass recovery of lysozyme reached 89.5%, and the active recovery was 96.8%. Compared with traditional hydrophobic interaction chromatography, this new stationary phase has a good hydrophobic ability and a significant refolding efficiency.  相似文献   

20.
张淑琼  邹凤平  李烃 《化学学报》2009,67(22):2619-2623
合成了分离蛋白质的乙二醇-磷霉素钠改性氧化锆高效液相色谱固定相, 通过漫反射红外光谱、元素分析等分析方法对该固定相进行了表征. 以溶菌酶、核糖核酸酶A、细胞色素C和糜蛋白酶四种标准碱性蛋白质为探针, 系统地考察了固定相的疏水相互作用色谱性能. 结果表明, 乙二醇-磷霉素改性氧化锆固定相对蛋白质有一定的保留, 表现出较高的分离选择性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号