首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several prototypes of aromatic (Ar) and non-aromatic (NoAr) cation-exchange ligands suitable for capture of proteins from high conductivity (ca. 30 mS/cm) mobile phases were coupled to Sepharose 6 Fast Flow. These new prototypes of multi-modal cation-exchangers were found by screening a diverse library of multi-modal ligands and selecting cation-exchangers resulting in elution of test proteins at high ionic-strength. Candidates were then tested with respect to breakthrough capacity of bovine serum albumin (BSA), human IgG and lysozyme in buffers adjusted to a high conductivity. By applying a salt-step or a pH-step the recoveries were also tested. We have found that aromatic multi-modal cation-exchanger ligands based on carboxylic acids seem to be optimal for the capture of proteins at high-salt conditions. Experimental evidence on the importance of the relative position of the aromatic group in order to improve the breakthrough capacity at high-salt conditions has been found. It was also found that an amide group on the alpha-carbon was essential for capture of proteins at high-salt conditions. Compared to a strong cation-exchanger such as SP Sepharose Fast Flow the best new multi-modal weak cation-exchangers have breakthrough capacities of BSA, human IgG and lysozyme that are 10-30 times higher at high-salt conditions. The new multi-modal cation-exchangers can also be used at normal cation-exchange conditions and with either a salt-step or a pH-step (to pH-values where the proteins are negatively charged) to accomplish elution of proteins. In addition, the functional performance of the new cation-exchangers was found to be intact after treatment in 1.0 M sodium hydroxide solution for 10 days. For BSA it was also possible to design cation-exchangers based on non-aromatic carboxyl acid ligands with high capacities at high-salt conditions. A common feature of these ligands is that they contain hydrogen acceptor groups close to the carboxylic group. Furthermore, it was also possible to obtain high breakthrough capacities for lysozyme and BSA of a strong cation-exchanger (SP Sepharose Fast Flow) if phenyl groups were attached to the beads. Varying the ligand ratio (SP/Phenyl) could be used for optimizing the function of mixed-ligand ion-exchange media.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
通过对醛酮化合物分子结构特征及其气相色谱保留指数(RI)和沸点与分子结构间关系的研究,提出了分子极化效应指数(MPEI)、奇偶指数(OEI)、立体效应指数(SVij)、顶点度-距离指数(VDI)及键连接矩阵特征根(∑X1CH)等拓扑-量子结构参数,用多元线性回归(MLR)方法获得了醛酮类化合物的沸点及其在不同极性色谱柱上的气相色谱保留指数与这些拓扑-量子指数间良好的定量结构-性质相关(QSPR)模型,相关系数均大于0.99。5个分子结构参数具有明确的物理化学意义且易于计算和运用。与文献研究的比较结果表明:由上述分子结构参数得出的模型方程适用于各类醛酮化合物的气相色谱保留指数及沸点的预测且具有较好的稳定性和准确性。  相似文献   

11.
12.
13.
14.
This paper describes the use of surface plasmon resonance (SPR) spectroscopy and self-assembled monolayers (SAMs) to understand the characteristics of surfaces that promote the adsorption of proteins at high ionic strengths (high-salt conditions). We synthesized SAMs presenting different multimodal ligands and determined the influence of surface composition, solution composition, and the nature of the protein on the extent of protein adsorption onto the SAMs. Our results confirm that hydrophobic interactions can contribute significantly to protein adsorption under high-salt conditions. In particular, the extent of protein adsorption under high-salt conditions increased with increasing surface hydrophobicity. The extent of protein adsorption was also influenced by the solution composition and decreased with an increase in the chaotropicity of the anion. The combination of SPR and SAMs is well-suited for studying the interaction of proteins with complex surfaces of relevance to chromatography.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号