首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The progresses of understanding of the surfactant adsorption at the hydrophilic solid-liquid interface from extensive experimental studies are reviewed here. In this respect the kinetic and equilibrium studies involves anionic, cationic, non-ionic and mixed surfactants at the solid surface from the solution. Kinetics and equilibrium adsorption of surfactants at the solid-liquid interface depend on the nature of surfactants and the nature of the solid surface. Studies have been reported on adsorption kinetics at the solid-liquid interface primarily on the adsorption of non-ionic surfactant on silica and limited studies on cationic surfactant on silica and anionic surfactant on cotton and cellulose. The typical isotherm of surfactants in general, can be subdivided into four regions. Four-regime isotherm was mainly observed for adsorption of ionic surfactant on oppositely charged solid surface and adsorption of non-ionic surfactant on silica surface. Region IV of the adsorption isotherm is commonly a plateau region above the CMC, it may also show a maximum above the CMC. Isotherms of four different regions are discussed in detail. Influences of different parameters such as molecular structure, temperature, salt concentration that are very important in surfactant adsorption are reviewed here. Atomic force microscopy study of different surfactants show the self-assembly and mechanism of adsorption at the solid-liquid interface. Adsorption behaviour and mechanism of different mixed surfactant systems such as anionic-cationic, anionic-non-ionic and cationic-non-ionic are reviewed. Mixture of surface-active materials can show synergistic interactions, which can be manifested as enhanced surface activity, spreading, foaming, detergency and many other phenomena.  相似文献   

2.
The critical surface excess of micellization (CSEM) should be regarded as the critical condition for micellization of ionic surfactants instead of the critical micelle concentration (CMC). There is a correspondence between the surface excesses Γ of anionic, cationic, and zwitterionic surfactants at their CMCs, which would be the CSEM values, and the critical association distance for ionic pair association calculated using Bjerrum's correlation. Further support to this concept is given by an accurate method for the prediction of the relative binding of alkali cations onto dodecylsulfate (NaDS) micelles. This method uses a relative binding strength parameter calculated from the values of surface excess Γ at the CMC of the alkali dodecylsulfates. This links both the binding of a given cation onto micelles and the onset for micellization of its surfactant salt. The CSEM concept implies that micelles form at the air-water interface unless another surface with greater affinity for micelles exists. The process would start when surfactant monomers are close enough to each other for ionic pairing with counterions and the subsequent assembly of these pairs becomes unavoidable. This would explain why the surface excess Γ values of different surfactants are more similar than their CMCs: the latter are just the bulk phase concentrations in equilibrium with chemicals with different hydrophobicity. An intriguing implication is that CSEM values may be used to calculate the actual critical distances of ionic pair formation for different cations, replacing Bjerrum's estimates, which only discriminate by the magnitude of the charge.  相似文献   

3.
CMC型高分子表面活性剂在固/液界面上的吸附   总被引:11,自引:1,他引:11  
在润湿、乳化、洗涤、分散等应用领域中,表面活性剂分子在界面上的吸附状态对性能有重要影响.另一方面,在化学驱油过程中,表面活性剂分子在氧化物矿物上的吸附是引起表面活性剂损失的主要原因,表面活性剂的损耗量大,将降低采收率及经济效益[1].高分子表面活性剂作为一种多功能的新型表面活性剂在许多领域有广阔的应用前景,但对其性能研究尚处于起步阶段,特别是结构复杂的高分子双亲性共聚物,在吸附、乳化等方面研究尚少报导.羧甲基纤维素系列高分子表面活性剂是采用独特的超声波辐照技术合成的嵌段型共聚物,具有优良的表/界面活性[2],可望用…  相似文献   

4.
The effects of protonation on alkyldimethyl amine oxide micelles are reviewed, mainly with regard to dodecyl and tetradecyl homologs. The topics discussed are hydrogen ion titration properties, critical micelle concentration (CMC), area per surfactant and micelle aggregation number. A hydrogen bond hypothesis is proposed to interpret the several characteristic results associated with protonation: between two cationic species as well as between the non-ionic-cationic pair. The dipole-dipole interaction of the non-ionic micelle is discussed in relation to both: (a) the unusually high CMC values of the non-ionic micelles compared with other non-ionic surfactants with the same hydrocarbon chain; and (b) the reversal of the stability of the non-ionic and the cationic micelles at high ionic strengths. Two different approaches of the salting out effect on the ionic micelles are compared, the Chan-Mukerjee approach and ours, in relation to the non-linear Corrin-Harkins relation. The obtained salting out constants of the surfactants carrying a dodecyl chain decreased as the head group becomes more polar. Infrared and 13C-NMR spectra data are examined from the point of the specific interaction claimed by the hydrogen bond model. Mixed surfactant systems including amine oxides and the solid state phase behavior of amine oxides are both briefly reviewed.  相似文献   

5.
高分子表面活性剂在固/液界面上的吸附形态   总被引:8,自引:0,他引:8  
曹亚  李惠林 《物理化学学报》1999,15(10):895-899
采用紫外光谱、XPS研究了羧甲基纤维素型高分子表面活性剂在硅胶 /水界面上的吸附形态 ,结果表明随着高分子表面活性剂溶液浓度增大 ,分子在硅胶表面的吸附由单层逐渐变为多层 ,生成半胶束结构 .  相似文献   

6.
Phenol red was immobilised into a polysiloxane matrix using a sol-gel process to form pH optical sensors. The sol-gel was obtained by hydrolysis of tetraethoxysilane (TEOS) in the presence of phenol red (PR) and the appropriate surfactant. Different surfactants, namely cetyltrimethylammonium bromide (CTAB), dodecyldimetyl amino-oxide (GLA) and Triton X-100 (TX-100), were employed. Interestingly, the use of surfactants significantly improved the mesostructure of the silica and increased the porosity of the system. The two response pH ranges were shifted to pH 0.0–3.0 and pH 10.5–1.5M [OH?] compared with those of the free PR (pH 0.0–3.0 and pH 6.5–9.5). It is found that the pH response and the pKa shift of the phenol red were dependent, not only on the silica matrix but also on the ionic properties of surfactants. In the case of ionic surfactants such as CTAB or GLA, there was further shift to more acidic and more basic pH, whereas in the case of non-ionic surfactants such as TX-100 no significant change of the pH curve was observed.  相似文献   

7.
We show that all four classes of surfactants (anionic, cationic, non-ionic, and zwitterionic) denature alpha-lactalbumin (alphaLA), making alphaLA an excellent model system to compare their denaturation mechanisms. This involves at least two steps in all surfactants but is more complex in charged surfactants due to their strong binding properties. At very low concentrations, charged surfactants bind specifically as monomers, but the first denaturation process only sets in when 4-10 surfactant molecules are bound to form clusters on the protein surface and is followed by a second loss of structure as 20-25 surfactant molecules are bound. Sub-micellar interactions can be modeled as simple independent binding at multiple sites which does not achieve saturation before micelle formation sets in. In contrast, no specific sub-micellar surfactant binding is detected by calorimetry in the presence of zwitterionic and non-ionic surfactants, and denaturation only occurs around the cmc. Unfolding rates are very rapid in charged surfactants and reach a similar plateau level around the cmc, indicating that monomers and micelles operate on a mutually exclusive basis. In contrast, unfolding occurs slowly in zwitterionic and non-ionic surfactants and the rate increases with the cmc, suggesting that monomers cooperate with micelles in denaturation.  相似文献   

8.
Adsorption of organic molecules on silica surface   总被引:4,自引:0,他引:4  
The adsorption behaviour of various organic adsorbates on silica surface is reviewed. Most of the structural information on silica is obtained from IR spectral data and from the characteristics of water present at the silica surface. Silica surface is generally embedded with hydroxy groups and ethereal linkages, and hence considered to have a negative charged surface prone to adsorption of electron deficient species. Adsorption isotherms of the adsorbates delineate the nature of binding of the adsorbate with silica. Aromatic compounds are found to involve the pi-cloud in hydrogen bonding with silanol OH group during adsorption. Cationic and nonionic surfactants adsorb on silica surface involving hydrogen bonding. Sometimes, a polar part of the surfactants also contributes to the adsorption process. Styryl pyridinium dyes are found to anchor on silica surface in flat-on position. On modification of the silica by treating with alkali, the adsorption behaviour of cationic surfactant or polyethylene glycol changes due to change in the characteristics of silica or modified silica surface. In case of PEG-modified silica, adsolubilization of the adsorbate is observed. By using a modified adsorption equation, hemimicellization is proposed for these dyes. Adsorptions of some natural macromolecules like proteins and nucleic acids are investigated to study the hydrophobic and hydrophilic binding sites of silica. Artificial macromolecules like synthetic polymers are found to be adsorbed on silica surface due to the interaction of the multifunctional groups of the polymers with silanols. Preferential adsorption of polar adsorbates is observed in case of adsorbate mixtures. When surfactant mixtures are considered to study competitive adsorption on silica surface, critical micelle concentration of individual surfactant also contributes to the adsorption isotherm. The structural study of adsorbed surface and the thermodynamics of adsorption are given some importance in this review.  相似文献   

9.
In this paper a new class of multichain non-ionic surfactants based on lysine with two octyl, decyl, dodecyl or tetradecyl chains and one polydispersed polyoxyethylene diethanolamide head group are introduced. Measurements at air/water interface and bulk solution of surface-active properties such as surface tension and critical micelle concentration were made. These compounds were obtained by condensation of the corresponding long chain Nα, N x diacyl lysine with a polydispersed oxyethylene diethanolamine which was prepared in our laboratory. A preliminary study of their water solubility properties is also described. The surface-active properties were evaluated by measuring the variation of surface tension and the formation of a presumable CMC as a function of concentration in the aqueous solution. All compounds were soluble in water up to 0.5% (w/v). They showed normal surface tension values in water solution and presented higher CMC than classical polyoxyethylene alcohols non ionic surfactants with the same number of carbon atoms in the hydrophobic moiety. In this series when each chain is increased by four methylene units, the CMC falls to about one-hundreth of its previous value.  相似文献   

10.
The surface adsorption of n-dodecyl phosphocholine (C12PC) has been characterised by a combined measurement of surface tension and neutron reflectivity. The critical micellar concentration (CMC) was found to be 0.91 mM at 25 degrees C in pure water. At the CMC, the limiting area per molecule (A(cmc)) was found to be 52+/-3 A2 and the surface tension (gamma(cmc)) to be ca. 40.0+/-0.5 mN/m. The parallel study of chain isomer n-hexadecyl phosphocholine (C16PC) showed a decrease of the CMC to 0.012 mM and a drop of gamma(cmc) to 38.1+/-0.5 mN/m. However, A(cmc) for C16PC was found to be 54+/-3 A2, showing that increase in alkyl chain length by four methylene groups has little effect on A(cmc). The almost constant A(cmc) suggested that the limiting area per molecule was determined by the bulky PC head group. It was further found that the surface tension and related key physical parameters did not vary much with temperature, salt addition, solution pH or any combination of these, thus showing that surface adsorption and solution aggregation from PC surfactants is largely similar to the zwitterionic betaine surfactants and is distinctly different from ionic and non-ionic surfactants. The thickness of the adsorbed monolayers measured from both dC12hPC and dC16hPC was found to be 20-22 A at the CMC from neutron reflectivity. Neither A(cmc) nor layer thickness varied with alkyl chain length, indicating that as the alkyl chain length became longer it was further tilted away from the surface normal direction and the layer packing density increased. It was also observed that the thickness of the layer varied little with surfactant concentration, indicating that the average conformational orientation of the alkyl chain remained unchanged against varying surface coverage.  相似文献   

11.
Two synthetic pathways have been elaborated to prepare new series of highly fluorinated sulfamates with excellent yields. Surface tension measurements at the air/water interface showed that these compounds constitute new excellent non-ionic surfactants exhibiting high surface activity in the range of the best non-ionic fluoro surfactants already described in the literature. The most important feature of this work is that, in comparison with the classical non-ionic fluoro surfactants, these sulfamates are easily synthesized in a monodisperse form from classical and relatively non-toxic starting materials. The critical micelle concentration (CMC), the maximum surface excess concentration (Γ) and the minimum area per molecule (a) have been calculated from the surface tension measurements on surfactant aqueous solutions. Relationships have been established between the length of both the fluorinated tail and hydrocarbon spacer linking the hydrophobic tail to the hydrophilic head, and the interfacial properties.  相似文献   

12.
With the aim of being able to manipulate the processes involved in interfacial catalysis, we have studied the effects of a mixture of nonionic/anionic surfactants, C12E6/LAS (1:2 mol %), on the adsorption and surface mobility of a lipase obtained from Thermomyces lanuginosus (TLL). Surface plasmon resonance (SPR) and ellipsometry were used to analyze the competitive adsorption process between surfactants and TLL onto hydrophobic model surfaces intended to mimic an oily substrate for the lipase. We obtained the surface diffusion coefficient of a fluorescently labeled TLL variant on silica silanized with octadecyltrichlorosilane (OTS) by fluorescence recovery after photobleaching (FRAP) on a confocal laser scanning microscope. By means of ellipsometry we calibrated the fluorescence intensity with the surface density of the lipase. The TLL diffusion was measured at different surface densities of the enzyme and at two time intervals after coadsorption with different concentrations of C12E6/LAS. The surfactant concentrations were chosen to represent concentrations below the critical micelle concentration (CMC), in the CMC region, and above the CMC. The apparent TLL surface diffusion was extrapolated to infinite surface dilution, D0. We found that the presence of surfactants strongly modulated the surface mobility of TLL: with D(0) = 0.8 x 10(-11) cm2/s without surfactants and D0 = 13.1 x 10(-11) cm2/s with surfactants above the CMC. The increase in lipase mobility on passing the CMC was also accompanied by a 2-fold increase in the mobile fraction of TLL. SPR analysis revealed that surface bound TLL was displaced by C12E6/LAS in a concentration-dependent manner, suggesting that the observed increase in surface mobility imparts bulk-mediated diffusion and so-called rebinding of TLL to the surface. Our combined results on lipase/surfactant competitive adsorption and lipase surface mobility show how surfactants may play an important role in regulating interfacial catalysis from physiological digestion to technical applications such as detergency.  相似文献   

13.
Density measurements were carried out for aqueous solutions of two cationic surfactants: dodecylethyldimethylammonium bromide (C12(EDMAB)) and benzyldimethyldodecylammonium bromide (BDDAB). On the basis of the obtained results of the measurements the CMC and partial molar volumes of the surfactants studied were also determined. The obtained CMC values were also analyzed with those accounted on the basis of the surface tension data from the previous paper [J. Harkot, B. Jańczuk, J. Colloid Interface Sci. (2008), submitted for publication]. The values of CMC determined from the surface tension and density measurements for C12(EDMAB) are equal to 9.9×10−3 and 1.5×10−2 M and for BDDAB to 5.25×10−3 and 5.3×10−3 M, respectively. These obtained values are very similar. However, in the literature it is difficult to find the CMC values for C12(EDMAB) and BDDAB determined by these two methods used by us—especially from the density measurements for BDDAB and surface tension measurements for C12(EDMAB). In the case of the apparent molar volumes of C12(EDMAB) there is a good agreement between the values obtained by us and those found in the literature. The CMC values for C12(EDMAB) and BDDAB were also determined on the basis of their surface tension and free energy of electrostatic interactions between the polar heads of these surfactants and compared with those obtained from the surface tension and density measurements. It was found that the theoretically obtained CMC values were close to those determined from the density and surface tension data for the C12(EDMAB) and that the ratios of the CMC values of the surfactants to their concentration at which the water surface tension decreased by about 20 mN/m proved that the presence of the aryl group in the BDDAB head instead of the methyl group caused that its micellization process was more inhibited in relation to its adsorption at air–water interface than that of C12(EDMAB).  相似文献   

14.
Recent advances in understanding dynamic surface tensions (DSTs) of surfactant solutions are discussed. For pre-CMC solutions of non-ionic surfactants, theoretical models and experimental evidence for a mixed diffusion-kinetic adsorption mechanism are covered. For micellar solutions of non-ionics, up to approximately 100 x CMC, the DST behaviour can also be accounted for using a mixed mechanism model. Finally, the first reported measurements of the dynamic surface excess Gamma(t), using the overflowing cylinder in conjunction with neutron reflection, are described.  相似文献   

15.
Recent work on mesoporous silica formation using cationic and non-ionic templates has unveiled a large number of anion effects. Anions are seen to change the hydrolysis rates of the silicate precursors, affecting the surface properties and morphologies of the final products after calcination, and they often improve the hydrothermal stability of the silica materials. These advances are reviewed in connection with the Hofmeister series of anions and the known effects of anions on the self-assembly and phase behavior of cationic and non-ionic surfactants.  相似文献   

16.
We have constructed a model to predict the properties of non-ionic (alkyl-ethylene oxide) (C(n)E(m)) surfactants, both in aqueous solutions and near a silica surface, based upon the self-consistent field theory using the Scheutjens-Fleer discretisation scheme. The system has the pH and the ionic strength as additional control parameters. At high ionic strength, the solvent quality for the surfactant head groups is affected, which changes both the bulk and the adsorption behavior of the surfactant. For example, with increasing ionic strength, the CMC drops and the aggregation increases. Surfactants adsorb above the critical surface association concentration (CSAC). The CSAC is a function of the surfactant and the surface properties. Therefore, the CSAC varies with both the ionic strength and the pH. We predict that with increasing ionic strength, the CSAC will first slightly increase but then drop substantially. The charge on the surface is pH dependent, and as the head groups bind through H-bonding to the silanol groups, the CSAC increases with increasing pH. We focus on adsorption/desorption transitions for the surfactants and compare these to the experimental data. Both the equilibrium predictions and the consequences for the kinetics of adsorption follow experimental findings. Our results show that molecularly realistic models can reveal a much richer interfacial behavior than anticipated from more generic models.  相似文献   

17.
We have synthesized surface modified ZnS nanoparticles of size 2-3 nm using non-ionic surfactant-stabilized reverse emulsions. The non-ionic surfactants in the Span series, i.e. sorbitan monolaurate (Span 20) and sorbitan monooleate (Span 80) of hydrophilic-lipophilic balance (HLB) values of 8.6 and 4.3, respectively, have been used for the stabilization of emulsions. The role of these surfactants in controlling the size and properties of the ZnS nanoparticles has been discussed. The triethylamine (TEA) has been proved to be the effective surface modifying (capping) agent for the preparation of free-standing ZnS nanoparticles. The Span 20 with the higher HLB value of 8.6 has been found to be highly suitable in synthesizing TEA-capped ZnS nanoparticles of smaller size and higher photophysical characteristics compared to that of the Span 80 of lower HLB value of 4.3. A mechanism for the formation of TEA-capped ZnS nanoparticles from the surfactant-stabilized reverse emulsions has been proposed.  相似文献   

18.
A novel method is reported for quantifying protein adsorption to naked silica tubings and for assessing the efficacy of amino quenchers added to the background electrolyte. It consists of flushing a fluorescently-labelled protein (myoglobin) into a capillary equilibrated in Tris-acetate buffer, pH 5.0, until full saturation of the potential adsorbing sites. Desorption is then affected by driving electrophoretically sodium dodecyl sulphate (SDS) micelles into the capillary from the cathodic reservoir: the peak of eluted material is quantified fluorometrically by using a dual laser beam instrument able to read the fluorescein-isothiocyanate-labelled myoglobin at 520 nm and the internal standard (sulphorodamine) at 630 nm. As potential quenchers, a series of monoamines have been investigated (triethylamine, triethanolamine, ethylamine), followed by diamines (putrescine, cadaverine and hexamethonium bromide) and finally by oligoamines [spermidine, spermine and TEPA (tetraethylenepentamine), i.e., a tri- a tetra- and a pentamine, respectively]. Two values of molarities have been derived: a value at 50% (a kind of a dissociation constant) and a value at 90% inhibition of binding of macromolecules to the silica surface. According to these figures of merit, mono- and diamines are rather poor quenchers of interaction with the wall, since the 50% values are of the order of 50-100 mM and the 90% values reach as high as 560 mM. On the contrary, oligoamines, especially spermine and TEPA, are most effective, since the 50% molarities are in the sub-millimolar range and the 90% values are of the order of ca. 1 mM. Figures of merit have also been derived for different washing procedures. Those most commonly adopted in routine practice, i.e., of washing with either 1 M NaOH or with 1 M HCl, or with both, leave behind traces of proteins still bound to the wall, whereas the SDS micelle electrophoretic desorption seems to be 100% effective.  相似文献   

19.
The complexation between non-ionic polyethylene oxide (PEO)-based surfactants (Triton X-45, Triton X-100, polyethylene glycol-1000-monostearate, and Brij 35) and cyclodextrins is studied. It is shown that the addition of surfactant solutions to the aqueous solution of alpha, beta-, and gamma-cyclodextrins affords poorly soluble crystalline precipitates. Parameters of crystalline structure and the composition of complexes are analogues to those obtained on the basis of polyethylene oxide. Using a method of surface tension it is shown that cyclodextrins favor the increase of the value of critical micelle concentration (CMC) of surfactants. The dependence of CMC from the molar ratio cyclodextrin/surfactant permits us to determine the composition of inclusion complexes in solution. For Triton X-100 and polyethylene glycol-1000-monostearate values of stoichiometric composition of complexes in solution and in condensed phase agree well. It is shown that in the presence of beta-cyclodextrin the destruction of micelles based on Triton X-100 occurs. UV-spectroscopy is used for the investigation of the microenvironment of a phenyl group in inclusion complexes based on alpha- and beta-cyclodextrins. The interaction of gamma-cyclodextrin with PEO surfactants results in the formation of novel double-tailed surfactants. The values of CMC registered in solutions of these complexes is lower than the corresponding value of Triton X-100 and polyethylene glycol-1000-monostearate. The stoichiometric composition of complexes in solution is established from the dependence of CMC versus the gamma-cyclodextrin/surfactant ratio. The composition of the complexes in solution and condensed phase agree well. The interaction of alpha- and gamma-cyclodextrins with Brij 35 results in the formation of nonstoichiometric complexes. The investigation of the dependences of CMC of modified surfactants from temperature shows that these supramolecular structures exist at high temperatures. Copyright 1999 Academic Press.  相似文献   

20.
几种表面活性剂与DNA的相互作用   总被引:7,自引:1,他引:7  
用循环伏安、紫外-可见光谱和交流阻抗等方法,以电活性小分子亚甲基蓝( MB)为探针,研究了几种表面活性剂与DNA的相互作用。研究发现,阴离子、阳离 子和非离子表面活性剂均可通过疏水和静电作用与固定在电极表面的DNA分子结合 ,改变电极表面DNA的状态,进而影响电活性小分子的电化学行为。阴离子表面活 性剂与DNA之间以静电排斥为主,也有部分疏水性结合,它使MB的氧化还原峰峰电 流减小。阳离子表面活性剂十六烷基三甲基溴化铵、十二烷基三甲基氯化铵均在一 定浓度范围内对MB的电化学响应有增敏作用,而代十六烷基吡啶、溴代十八烷基吡 啶表现出抑制效应,它们与DNA间既有疏水性作用,也有静电吸引。非离子表面活 性剂与DNA的结合较弱,其主要是通过改变溶液的性质(如粘度、极性和介电常数 等)影响DNA的构象,从而导致MB电化学参数的微弱变化。此外,表面活性剂疏水 链的长短及极性头基的大小对作用过程也有一定影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号