首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five silver(I) double salts containing embedded acetylenediide, [Ag([12]crown-4)(2)][Ag(10)(C(2))(CF(3)CO(2))(9)([12]crown-4)(2)(H(2)O)(3)] x H(2)O (2), [Ag(2)C(2) x 5 AgCF(3)CO(2) x (benzo[15]crown-5) x 2 H(2)O] x 0.5 H(2)O (3), [Ag(4)([18]crown-6)(4)(H(2)O)(3)][Ag(18)(C(2))(3)(CF(3)CO(2))(16)(H(2)O)(2.5)] x 2.5 H(2)O (4), [Ag(2)C(2) x 6 AgC(2)F(5)CO(2) x 2([15]crown-5)](2) (5), and [(Ag(2)C(2))(2) x (AgC(2)F(5)CO(2))(9) x ([18]crown-6)(2) x (H(2)O)(3.5)] x H(2)O (6), have been isolated by varying the types of crown ethers and anions employed. Single-crystal X-ray analysis has shown that complex 2 is composed of winding anionic chains with sandwiched [Ag([12]crown-4)(2)](+) ions accommodated in the concave cavities between them. In 3, silver(I) double cages each sandwiched by a couple of benzo[15]crown-5 ligands are linked by [Ag(2)(CF(3)CO(2))(2)] bridges to form a one-dimensional structure. For 4, an anionic silver column is generated through fusion of two kinds of silver polyhedra (triangulated dodecahedron and bicapped trigonal antiprism), and the charge balance is provided by aqua-ligated [Ag([18]crown-6)](+) ions. Complex 5 is a centrosymmetric hexadecanuclear supermolecule composed of two [(eta(5)-[15]crown-5)(2)(C(2)@Ag(7))(mu-C(2)F(5)CO(2))(5)] moieties connected through a [Ag(2)(C(2)F(5)CO(2))(2)] bridge. Compound 6 is a discrete supermolecule containing an asymmetric (C(2))(2)@Ag(13) cluster core capped by two [18]crown-6 ligands in mu(3)-eta(5) and mu(4)-eta(6) ligation modes.  相似文献   

2.
Zhao XL  Wang QM  Mak TC 《Inorganic chemistry》2003,42(24):7872-7876
Four new silver(I) double salts (L(2)H)(4)[Ag(10)(C(2))(CF(3)CO(2))(12)(L)(2)].5H(2)O (1), [Ag(8)(C(2))(CF(3)CO(2))(6)(L)(6)] (2), [(Ag(2)C(2))(AgC(2)F(5)CO(2))(6)(L)(3)(H(2)O)].H(2)O (3), and (L.H(3)O)(2)[Ag(11)(C(2))(2)(C(2)F(5)CO(2))(9)(H(2)O)(2)].H(2)O (4) incorporating the hitherto unexplored ligand 4-hydroxyquinoline (L) have been synthesized by the hydrothermal method. Compound 1 features an unprecedented bicapped square-antiprismatic Ag(10) silver cage with an embedded C(2)(2-) moiety, whereas the discrete supermolecule 2 bears a rhombohedral Ag(8) core similar to that previously found in Ag(2)C(2).6AgNO(3). Compound 3 contains a discrete supramolecular complex whose core is a (C(2))(2)@Ag(16) double cage constructed from the edge-sharing of two monocapped square antiprisms, which is completely surrounded by 12 pentafluoropropionate, 6 4-hydroxyquinoline, and 2 aqua ligands. The layer structure in 4 is constructed from a sinuous anionic silver column composed of fused irregular monocapped trigonal antiprisms each encapsulating a C(2)(2-) dianion, with L.H(3)O(+) species serving as hydrogen-bond connectors to adjacent columns.  相似文献   

3.
Ten polymeric silver(I) double salts containing embedded acetylenediide: [(Ag2C2)2(AgCF3CO2)9(L1)3] (1), [(Ag2C2)2(AgCF3CO2)10(L2)3]H2O (2), [(Ag2C2)(AgCF3CO2)4(L3)(H2O)]0.75 H2O (3), [(Ag2C2)(1.5)(AgCF3CO2)7(L4)2] (4), [(Ag2C2)(AgCF3CO2)7(L5)2(H2O)] (5), [(Ag2C2) (AgC2F5CO2)7(L1)3(H2O)] (6), [(Ag2C2)(AgCF3CO2)7(L1)3(H2O)]2 H2O (7), [(Ag2C2)(AgC2F5CO2)6(L3)2] (8), [(Ag2C2)2(AgC2F5CO2)12(L4)2(H2O)4]H2O (9), and [(Ag2C2)(AgCF3CO2)6(L3)2(H2O)]H2O (10) have been isolated by varying the types of betaines, the perfluorocarboxylate ligands employed, and the reaction conditions. Single-crystal X-ray analysis has shown that 1-4 all have a columnar structure composed of fused silver(I) double cages, with C2(2-) species embedded in its stem and an exterior coat comprising anionic and zwitterionic carboxylates. For 5 and 6, single silver(I) cages are linked into a beaded chain through both types of carboxylate ligands. In 7, two different coordination modes of L1 connect the silver(I) polyhedra into a chain. For 8, the mu(2)-O,O' coordination mode of L3 connects the silver(I) double cages into a chain. Compound 9 exhibits a two-dimensional architecture generated from the cross-linkage of double cages by C2F5CO2-, L4, and [Ag2(C2F5CO2)2] units. Similar to 9, 10 is also a two-dimensional structure, which is formed by connecting the chains of linked double cages through [Ag2(CF3CO2)2] bridging.  相似文献   

4.
Halogenated 1,3,5-triazapentadienyl ligands [N{(C(3)F(7))C(C(6)F(5))N}(2)](-), [N{(CF(3))C(C(6)F(5))N}(2)](-) and [N{(C(3)F(7))C(2,6-Cl(2)C(6)H(3))N}(2)](-), alone or in combination with other N-donors like CH(3)CN, CH(3)(CH(2))(2)CN, and N(C(2)H(5))(3), have been used in the stabilization of thermally stable, two-, three- or four-coordinate silver(i) adducts. X-Ray crystallographic analyses of {[N{(C(3)F(7))C(C(6)F(5))N}(2)]Ag}(n), {[N{(C(3)F(7))C(C(6)F(5))N}(2)]Ag(NCCH(3))}(n), {[N{(C(3)F(7))C(2,6-Cl(2)C(6)H(3))N}(2)]Ag(NCCH(3))}(n), {[N{(CF(3))C(C(6)F(5))N}(2)]Ag(NCCH(3))(2)}(n) and {[N{(C(3)F(7))C(C(6)F(5))N}(2)]Ag(NCC(3)H(7))}(n) revealed the presence of bridging 1,3,5-triazapentadienyl ligands bonded to silver through terminal nitrogen atoms. These adducts are polymeric in the solid state. [N{(C(3)F(7))C(2,6-Cl(2)C(6)H(3))N}(2)]AgN(C(2)H(5))(3) is monomeric and features a 1,3,5-triazapentadienyl ligand bonded to Ag(I) in a κ(1)-fashion via only one of the terminal nitrogen atoms. The solid state structure of [N{(C(3)F(7))C(C(6)F(5))N}(2)]H has also been reported and it forms polymeric chains via inter-molecular N-H···N hydrogen-bonding.  相似文献   

5.
Wang QM  Mak TC 《Inorganic chemistry》2003,42(5):1637-1643
The first successful attempt to construct supramolecular entities via incorporation of bifunctional exodentate ligands into the silver acetylide system is reported. Coordination assembly with nitrogen-donor spacers led to the formation of five distinct supramolecular complexes, namely [(Ag(2)C(2))(AgCF(3)CO(2))(4)(pyz)(2)](n) (1), [(Ag(2)C(2))(2)(AgCF(3)CO(2))(10)(CF(3)CO(2))(4)(DabcoH)(4)(H(2)O)(1.5)].H(2)O (2), [(Ag(2)C(2))(AgCF(3)CO(2))(4)(CF(3)CO(2))(bpaH)](n)() (3), [(Ag(2)C(2))(AgCF(3)CO(2))(8)(bpa)(4)](n) (4), and [(Ag(2)C(2))(2)(AgCF(3)CO(2))(10)(bppz)(2)(H(2)O)](n) (5) (pyz = pyrazine; Dabco = 1,4-diazabicyclo[2.2.2]octane; bpa = 1,2-bis(4-pyridyl)ethane; bppz = 2,3-bis(2-pyridyl)pyrazine). Complex 1 is a three-dimensional framework composed of silver columns cross-linked by pyrazine bridges, whereas 2 contains a discrete supermolecule whose core is a Ag(14) double cage that is completely surrounded by trifluoroacetate, aqua, and terminal monoprotonated Dabco ligands. Complex 3 has a branched-tree architecture with one terminal of the bpa ligand attached to the silver backbone and the other exposed and protonated. In 4, neutral decanuclear [(Ag(2)C(2))(AgCF(3)CO(2))(8)] units are interlinked by bpa spacers adopting both gauche and anti conformations to generate a layer structure. Another two-dimensional network was formed with bppz serving as an angular bridging ligand in 5, in which the building unit is a silver quadruple cage containing 24 silver atoms.  相似文献   

6.
Reactions of the pyridine N-oxide ligands L, L2 and L3 with the silver acetylenediide-containing system under hydrothermal conditions gave rise to four silver-acetylenediide complexes bearing interesting C2@Agn motifs: (Ag2C2)2(AgCF3CO2)8(L1)3.5 (1), (Ag2C2)2(AgCF3CO2)8(L2)2 (2), (Ag2C2)(AgCF3CO2)4(L3) (3) and [(Ag7(C2)(CF3SO3)3(L3)2(H2O)2] x 2CF3SO3 (4) (L = nicotinic acid N-oxide, L(1) = pyridine N-oxide, L2 = 1,2-bis(4-pyridyl)ethane N,N'-dioxide, L3 = 1,3-bis(4-pyridyl)propane N,N'-dioxide), which exhibit new distorted polyhedral C2@Agn cage motifs. Complex 1 has a pair of acetylenediide dianions encapsulated in a Ag(14) aggregate composed of three polyhedral parts, whereas 2 contains an irregular (C2)2@Ag13 double cage. In 3, the basic building unit is a centrosymmetric (C2)2@Ag12 double cage with each component single cage taking the shape of a highly distorted triangulated dodecahedron with one missing vertex. As to complex 4, the core is a C2@Ag7 single cage in the form of a slightly distorted monocapped trigonal prism with four cleaved edges that include all three vertical sides. Furthermore, in the silver-rich environment, the pyO-type ligands are induced to exhibit unprecedented coordination modes, such as the mu(5)-O,O,O,O',O' ligation mode of L2 in 2 and the mu4-O,O,O',O' mode of L3 in 3 and 4.  相似文献   

7.
Addition of two equivalents of diphenylthiomethylphosphine (PPh2-CH2SPh) to the starting materials [Au(tht)2]A (tht = tetrahydrothiophene), AgCF3SO3, or [Cu(CH3CN)4]CF3SO3 produces the mononuclear derivatives [M(PPh2CH2SPh)2]A (M = Au, A = CF3SO3 (1a); M = Au, A = ClO4 (1b); M = Ag, A = CF3SO3 (4); M = Cu, A = CF3SO3 (5)) which are able to form the heterodinuclear complexes [AuM'(PPh2CH2SPh)2](CF3SO3)2 (M' = Ag (2), Cu (3)) with a P-Au-P environment. If the starting gold complex is [Au(C6F5)(tht)], reaction with the phosphine produces [Au(C6F5)-(PPh2CH2SPh)] (6) from which, by reaction with AgCF3SO3 or [Cu(CH3CN)4]CF3SO3, the "snake"-type linear complexes [Au2M(C6F5)2-(PPh2CH2SPh)2]CF3SO3 (M = Ag (7), Cu (8)) are obtained. If the silver starting complex is AgCF3CO2, reaction in a 1:1 ratio gives the tetranuclear complex [Au2Ag2(C6F5)2(PPh2CH2SPh)2-(CF3CO2)2] (9). When the molar ratio is 1:2 the trinuclear complex [AuAg2(C6F5) (CF3CO2)2(PPh2CH2SPh)] (10) is obtained. According to ab initio calculations, the presence of only one gold atom is enough to induce metallophilic attractions in the group congeners, and this effect can be modulated depending on the gold ligand.  相似文献   

8.
The thiophene-based bis(N-methylamido-pyridine) ligand SC4H2-2,5-{C(=O)N(Me)-4-C5H4N}2 reacts with silver(I) salts AgX to give 1 : 1 complexes, which are characterized in the solid state as the macrocyclic complexes [Ag(2){SC4H2-2,5-(CONMe-4-C5H4N)2}2][X]2, which have the cis conformation of the C(=O)N(Me) group, when X = CF3CO2, NO3, or CF3SO3 but as the polymeric complex [Ag(n){SC4H2-2,5-(CONMe-4-C5H4N)2}n][X]n, with the unusual trans conformation of the C(=O)N(Me) group, when X = PF6. The bis(amido-pyridine) ligand SC4H2-2,5-{C(=O)NHCH2-3-C5H4N}2 reacts with silver(I) trifluoroacetate to give the polymeric complex [Ag(n){SC4H2-2,5-(CONHCH2-3-C5H4N)2}n][X]n, X = CF3CO2. The macrocyclic complexes contain transannular argentophilic secondary bonds. The polymers self assemble into sheet structures through interchain C=O...Ag and S...Ag bonds in [Ag(n){SC4H2-2,5-(CONMe-4-C5H4N)2}n][PF6]n and through Ag...Ag, C=O...Ag and Ag...O(trifluoroacetate)...HN secondary bonds in [Ag(n){SC4H2-2,5-(CONHCH2-3-C5H4N)2}n][CF3CO2]n.  相似文献   

9.
Su CY  Kang BS  Du CX  Yang QC  Mak TC 《Inorganic chemistry》2000,39(21):4843-4849
The C3-symmetric tripodal ligand tris(2-benzimidazolylmethyl)amine (ntb) and its alkyl-substituted derivatives tris(N-R-benzimidazol-2-ylmethyl)amine (R = methyl, Mentb; R = ethyl, Etntb; R = propyl, Prntb) react with various silver(I) salts to afford mononuclear [Ag(Prntb)(CF3SO3)].0.25H2O, 1, binuclear [Ag2(Mentb)2](CF3SO3)2.H2O, 2, trinuclear [Ag3(Etntb)2](ClO4)3.CH3OH, 3, and tetranuclear [Ag4(ntb)2(CH3CN)2(CF3CO2)2](CF3CO2)2.2H2O, 4. All four complexes have been characterized by elemental analyses, IR spectroscopy, and X-ray crystallography. The Ag(I) ion in 1 is coordinated to the three imine nitrogen atoms of the Prntb ligand and one oxygen atom of the trifluoromethanesulfonate anion in a distorted tetrahedral environment. Dinuclear 2 has C2 symmetry with each Ag(I) atom trigonally coordinated by two arms of one Mentb and one arm of another. Trinuclear 3 has C3 symmetry with a Ag3 regular triangle sandwiched between a pair of Etntb ligands such that one arm of each ligand is involved in linear coordination about an Ag(I) atom. In the tetranuclear complex 4, two linearly coordinated Ag(I) atoms lying on the molecular C2 axis are bridged by a pair of ntb ligands and the remaining pendant arm of each ntb ligand is attached to another Ag(I) atom whose tetrahedral coordination sphere is completed by an acetonitrile molecule and a chelating trifluoroacetate anion. Complexes 2 and 3 may be regarded as an aggregation of two tridentate ligands by a silver dimer and a trinuclear cluster with weak Ag...Ag interactions, respectively, while in 4 the aggregation of two tripodal ligands by four Ag(I) ions affords a multicomponent internal cavity. The packing modes of complexes 1-3 are dominated by weak supramolecular pi...pi and CH...pi interactions. Hexagonal or square channels are generated in 1 and 2, and a honeycomb layer structure is formed in 3 with solvate molecules and counteranions occupying the voids. The crystal structure of 4 consists of a three-dimensional network consolidated by NH...O and OH...O hydrogen bonds.  相似文献   

10.
Silver pyrazolates [[3-(CF3)Pz]Ag]3, [[3-(CF3),5-(CH3)Pz]Ag]3, [[3-(CF3),5-(Ph)Pz]Ag]3, [[3-(CF3),5-(But)Pz]Ag]3, and [[3-(C3F7),5-(But)Pz]Ag]3 have been synthesized by treatment of the corresponding pyrazole with a slight molar excess of silver(I) oxide. This economical and convenient route gives silver pyrazolates in high (>80%) yields. X-ray crystal structures of [[3-(CF3),5-(CH3)Pz]Ag]3, [[3-(CF3),5-(But)Pz]Ag]3, and [[3-(C3F7),5-(But)Pz]Ag]3 show that these molecules have trinuclear structures with essentially planar to highly distorted Ag3N6 metallacycles. [[3-(CF3),5-(CH3)Pz]Ag]3 forms extended columns via intertrimer argentophilic contacts (the closest Ag...Ag separation between the neighboring trimers are 3.355 and 3.426 A). The trinuclear [[3-(CF3),5-(But)Pz]Ag]3 units crystallize in pairs, basically forming "dimers of trimers", with the six silver atom core of the adjacent trimers adopting a chair conformation. However, in these dimers of trimers, even the shortest intertrimer Ag...Ag distance (3.480 A) is slightly longer than the van der Waals contact of silver (3.44 A). [[3-(C3F7),5-(But)Pz]Ag]3, which has two bulky groups on each pyrazolyl ring, shows no close intertrimer Ag...Ag contacts (closest intertrimer Ag...Ag distance = 5.376 A). The Ag-N bond distances and the intratrimer Ag...Ag separations of the silver pyrazolates do not show much variation. However, their N-Ag-N angles are sensitive to the nature (especially, the size) of substituents on the pyrazolyl rings. The pi-acidic [[3,5-(CF3)2Pz]Ag]3 and [[3-(C3F7),5-(But)Pz]Ag]3 form adducts with the pi-base toluene. X-ray data show that they adopt extended columnar structures of the type [[Ag3]2.[toluene]]infinity and [[Ag3]'.[toluene]]infinity ([[3,5-(CF3)2Pz]Ag]3 = [Ag3],[[3-(C3F7),5-(But)Pz]Ag]3 = [Ag3]'), in which toluene interleaves and makes face-to-face contacts with [[3-(C3F7),5-(But)Pz]Ag]3 or dimers of [[3,5-(CF3)2Pz]Ag]3.  相似文献   

11.
A new series of different nuclearity silver(I) complexes with a variety of tetracyano pendant-armed hexaazamacrocyclic ligands containing pyridine rings (Ln) has been prepared starting from the nitrate and perchlorate Ag(I) salts in acetonitrile solutions. The ligands and complexes were characterized by microanalysis, conductivity measurements, IR, Raman, electronic absorption and emission spectroscopy, and L-SIMS spectrometry. (1)H NMR titrations were employed to investigate silver complexation by ligands L3 and L.(4) The compounds [Ag2L2(NO3)2] (2), ([Ag2L2](ClO4)2.2CH3CN)(infinity) (4), [AgL3](ClO(4)).CH3CN (5), and [Ag4(L4)2(NO3)2](NO3)2.4CH3CN.2H2O (7) were also characterized by single-crystal X-ray diffraction. The complexes have different nuclearities. Complex 2 is dinuclear with an {AgN3O2} core and a significant intermetallic interaction, whereas complex 4 has a polymeric structure formed by dinuclear distorted {AgN4} units joined by nitrile pendant arms. Compound 5 is mononuclear with a distorted {AgN2} linear geometry, and complex 7 consists of discrete units of a tetranuclear array of silver atoms with {AgN3O} and {AgN4} cores in distorted square planar environments. Complexes 2 and 4 were found to be fluorescent in the solid state at room temperature because of the Ag-Ag interactions.  相似文献   

12.
The first 5-substituted trihydro(azolyl)borate system, the sodium trihydro(5-CF3-pyrazol-1-yl)borate, Na[H3B(5-(CF3)pz)], has been synthesized by the reaction of 3-trifuoromethyl-pyrazole with NaBH4 in high yield. Na[H3B(5-(CF3)pz)] reacts with AgNO3 in the presence of monodentate tertiary phosphanes PR3 (PR3=P(C6H5)3, P(p-C6H4CH3)3, P(m-C6H4CH3)3, P(o-C6H4CH3)3, or PCH3(C6H5)2) to afford silver(I) bis(phosphane) adducts. These compounds have been characterized by elemental analyses, FTIR, ESI-MS, and multinuclear (1H, 19F, and 31P) NMR spectroscopy. Solid-state structures of {[H3B(5-(CF3)pz)]Ag[P(C6H5)3]2} and {[H3B(5-(CF3)pz)]Ag[P(p-C6H4CH3)3]2} are also reported. They feature kappa2-N,H-bonded trihydro(pyrazolyl)borate ligands and pseudo-tetrahedral silver atoms.  相似文献   

13.
Wu JY  Lin YF  Chuang CH  Tseng TW  Wen YS  Lu KL 《Inorganic chemistry》2008,47(22):10349-10356
Self-assembly of AgNO 3 with the semirigid tetratopic ligands 1,2,4,5-tetrakis(benzoimidazol-1-ylmethyl)benzene (TBim) and 1,2,4,5-tetrakis(5,6-dimethylbenzimidazol-1-ylmethyl)benzene (TDMBim) afforded compounds [Ag 4(mu 4-TBim) 2(mu 2-eta (2)-NO 3) 2](NO 3) 2. (1)/ 2CH 2Cl 2.2CH 3OH ( 1mu (1)/ 2CH 2Cl 2.2CH 3OH) and [(NO 3 (-)) subset{Ag 4(mu 4-TDMBim) 2}][Ag(NO 3) 2](NO 3) 2.CH 2Cl 2.CH 3OH.4H 2O ( 2.CH 2Cl 2.CH 3OH.4H 2O), respectively. The structures of 1 and 2 were characterized by single-crystal X-ray diffraction analysis. Both compounds adopt a M 4L 2-type tetragonal metalloprismatic cage structure, [Ag 4(mu 4-L) 2] (4+), with strong intramolecular silver-silver contacts. Compound 1 is a discrete species, while compound 2 is a novel infinite chainlike supramolecular array involving silver metal strings assembled from a [Ag 4(mu 4-L) 2] (4+) nanocage and silver linkages. Thermogravimetric analyses of 1. (1)/ 2CH 2Cl 2.2CH 3OH and 2.CH 3OH.4H 2O indicate that the Ag 4L 2-cage structures of 1 and 2 both are thermally stable up to 330 degrees C. Results from an in situ (1)H NMR study of AgNO 3 and TDMBim in different molar ratios unambiguously revealed the successive self-organization process, in which self-organization of the molecular cage takes place initially followed by crystallization of the corresponding supramolecular arrays with silver metal strings.  相似文献   

14.
The preparation and structures of seven new silver(I) complexes involving the parent tris(pyrazolyl)methane unit, [C(pz)(3)], as the donor set, {[C6H5CH2OCH2C(pz)3]Ag}(BF4), {[C6H5CH2OCH2C(pz)3]2Ag3}(CF3SO3)3, {[HOCH2C(pz)3]Ag}(BF4), {[HOCH2C(pz)3]Ag}(CF3SO3), {[HC(pz)3]2Ag2(CH3CN)}(BF4)2, {[HC(pz)3]Ag}(PF6), and {[HC(pz)3]Ag}(CF3SO3), are reported. This project is based on a retro-design of our multitopic C6H(6-n)[CH2OCH2C(pz)3]n (pz = pyrazolyl ring, n = 2, 3, 4, and 6) family of ligands in such a way that each new ligand has one fewer organizational feature. The kappa2-kappa1 bonding mode of the [C(pz)3] units to two silvers, also observed with the multitopic ligands, is the dominant structural feature in all cases. Changing the counterion has important effects on the local structures and on crystal packing. When these structures are compared to similar ones based on the multitopic C6H(6-n)[CH2OCH2C(pz)3]n ligands, it has been shown that the presence of the rigid parts (central arene core and the [C(pz)3] units) are important in order to observe highly organized supramolecular structures. The presence of the flexible ether linkage is also crucial, allowing all noncovalent forces to manifest themselves in a cumulative and complementary manner.  相似文献   

15.
Two topologically comparable complexes, [Ag6(CF3CO2)3(L1-Me)3(SCH3)3]infinity (1) and [Ag6(CF3CF2CO2)3(L1-Me)2(SCH3)3(H2O)]infinity (2), were prepared and characterized by single-crystal diffractometry. The structures consist of Ag12S6 clusters linked by bis(methylthio)methane ligands, L1-Me, thus forming 1D coordination polymers. The 12 Ag atoms of the cluster are situated at the corners of a distorted cuboctahedron. The sulfur atoms of the six mu4-SCH3 entities occupy a position approximately 0.8 A above the center of each of the square faces of the polyhedron. The cleavage of the C-S bond of some of the ligands occurs during the syntheses, producing the -SCH3 anions. The coordination of the silver atoms varies from 5 to 7. The Ag...Ag contacts range from 2.9250(5) to 3.3615(6) A and from 2.961(1) to 3.380(1) A for 1 and 2, respectively. A polymeric ribbon is obtained when four ligands link a given cluster to two others. The chains of 1, held only by van der Waals forces, pack in a hexagonal manner. The two water molecules in 2 (Ag-OH2 = 2.385(7) A) are coordinated to silver atoms of the cluster. They are also strongly hydrogen bonded to the oxygen atoms of two pentafluoropropionate groups, one within the cluster (O...O = 2.741(1) A), the other in an adjacent chain (O...O = 2.818(1) A). The chains, thus H bonded to one another, generate a 2D coordination network.  相似文献   

16.
New silver(i) double salts (Ag(2)C(2))(AgCF(3)CO(2))(8)(3-pyCONH(2))(2)(H(2)O)(4) (1), [(Ag(2)C(2))(AgCF(3)CO(2))(4)(4-pyCONH(2))(H(2)O)].H(2)O (2), (Ag(2)C(2))(AgCF(3)CO(2))(6)(3-pyCONH(2))(4) (3), (Ag(2)C(2))(AgCF(3)CO(2))(6)(3-pyCN)(2) (4) and (Ag(2)C(2))(AgCF(3)CO(2))(4)(4-pyCN)(2) (5) (n-pyCONH(2) is pyridine-n-carboxamide, n-pyCN is n-cyanopyridine; n=3, 4) have been synthesized by the hydrothermal method. All five compounds contain polyhedral silver(i) cages each encapsulating a C(2)(2-) dianion. Compounds 1, 3 ,4 and 5 exhibit three-dimensional structures, whereas compound 2 is a two-dimensional network. The structure of 1 is constructed from the linkage of a branched-tree architecture via hydrogen bonds. Unlike 4 and 5, which involve the connection of n-cyanopyridine (n=3, 4) with silver columns, 3 results from the linkage of discrete silver cages via pyridine-3-carboxamide.  相似文献   

17.
Metal complexation studies were performed with AgSO(3)CF(3) and AgBF(4) and the ditopic pyrimidine-hydrazone ligand 6-(hydroxymethyl)pyridine-2-carboxaldehyde (2-methylpyrimidine-4,6-diyl)bis(1-methylhydrazone) (1) in both CH(3)CN and CH(3)NO(2) in a variety of metal-to-ligand ratios. The resulting complexes were studied in solution by NMR spectroscopy and in the solid state by X-ray crystallography. Reacting either AgSO(3)CF(3) or AgBF(4) with 1 in either CH(3)CN or CH(3)NO(2) in a 1:1 metal-to-ligand ratio produced a double helicate in solution. This double helicate could be converted into a linear complex by increasing the metal-to-ligand ratio; however, the degree of conversion depended on the solvent and counteranion used. Attempts to crystallize the linear AgSO(3)CF(3) complex resulted in crystals with the dimeric structure [Ag(2)1(CH(3)CN)(2)](2)(SO(3)CF(3))(4) (2), while attempts to crystallize the AgSO(3)CF(3) double helicate from CH(3)CN resulted in crystals of another dimeric complex, [Ag(2)1(SO(3)CF(3))(CH(3)CN)(2)](2)(SO(3)CF(3))(2)·H(2)O (3). The AgSO(3)CF(3) double helicate was successfully crystallized from a mixture of CH(3)CN and CH(3)NO(2) and had the structure [Ag(2)1(2)](SO(3)CF(3))(2)·3CH(3)NO(2) (4). The linear AgBF(4) complex could not be isolated from the double helicate in solution; however, crystals grown from a solution containing both the AgBF(4) double helicate and linear complexes in CH(3)CN had the structure [Ag(2)1(CH(3)CN)(2)](BF(4))(2) (5). The AgBF(4) double helicate could only be crystallized from CH(3)NO(2) and had the structure [Ag(2)1(2)](BF(4))(2)·2CH(3)NO(2) (6).  相似文献   

18.
Seward C  Chan J  Song D  Wang S 《Inorganic chemistry》2003,42(4):1112-1120
The reaction of AgX, where X = trifluoroacetate (CF(3)CO(2)(-), tfa), nitrate (NO(3)(-)), trifluoromethanesulfonate (triflate, CF(3)SO(3)(-), OTf), hexafluorophosphate (PF(6)(-)), or perchlorate (ClO(4)(-)), with 2,2',3' '-tripyridylamine (tpa) yields five novel silver(I) complexes, which have been structurally characterized. The five complexes have the same 1:1 stoichiometry of Ag/tpa but exhibit different modes of coordination, depending upon the counterion present in the compound. Compound 1, [Ag(tpa)(tfa)](n)(), forms a 1D coordination polymer of [Ag(tpa)(tfa)](2) dimer units linked through bridging tfa counterions. Compound 2, [Ag(tpa)(CH(3)CN)(NO(3))](n), forms a zigzag chain 1D coordination polymer exclusively through Ag-N bonds. In compounds 1 and 2, each tpa ligand is bound to two Ag(I) ions via a 2-py and a 3-py group. Compound 3, [Ag(tpa)(OTf)](n), forms a ribbonlike 1D coordination polymer, in which each tpa ligand binds to three different silver centers via all three pyridyl groups, and the counterion remains coordinated to the Ag(I) center. Compounds 4, [Ag(tpa)(CH(3)CN)](n)(PF(6))(n), and 5, [Ag(tpa)(CH(3)CN)](n)() (ClO(4))(n), display ribbonlike structures resembling that of 3, except that the counterions are not coordinated. All complexes are luminescent in acetonitrile solution, with emission maxima in the near-UV region (lambda(max) = 366, 368, 367, 367, and 368 nm for 1-5, respectively). At 77 K, the emission maxima are red-shifted to lambda(max) = 452, 453, 450, 450, and 454 nm for 1-5, respectively.  相似文献   

19.
Reaction of [2.2]paracyclophane (pcp) with silver(I) trifluoroacetate (AgCF(3)CO(2)) and silver(I) pentafluoroproprionate (AgC(2)F(5)CO(2)) has led to isolation of three novel intercalation polymers: [Ag(4)(pcp)(CF(3)CO(2))(4)](C(6)H(6)) (1), [Ag(4)(pcp)(CF(3)CO(2))(4)](C(6)H(3)Me(3)) (2), and [Ag(4)(pcp)(C(2)F(5)CO(2))(4)](pcp) (3). Structure studies using single crystal X-ray diffraction have shown that all compounds contain two-dimensional layered frameworks based on cation-pi interactions, in which pcp exhibits an unprecedented micro-tetra-eta(2) coordination mode. Guest molecules which weakly interact with the host pcp via C-H.pi interactions are intercalated between layers. The guest-eliminated complexes (1a and 2a) and guest-reincorporated ones (1b or 1c and 2b or 2c), accompanied by small structural changes, were confirmed by (1)H NMR, thermogravimetric analysis, mass spectra, and X-ray powder diffraction patterns. The structural changes from 1 --> 1a --> 1c (=1) can take place reversibly in the process of exposure of 1a to benzene vapor. The original framework of complex 2 is also completely recovered by immersing 2a in mesitylene as well as exposing it to mesitylene vapor.  相似文献   

20.
SynthesisandCrystalStructureof[Lu(NO_3)_3(H_2O)_2(CH_3CN)](Benzo-15-C-5)·CH_3CNWangRui-Yao;JinZhong-Sheng;NiJia-Zuan(Laboratoryo...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号