首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
侯振桃  李彦如  刘何燕  代学芳  刘国栋  刘彩池  李英 《物理学报》2016,65(12):127102-127102
采用基于密度泛函理论的第一性原理结合投影缀加平面波的方法,研究了GaN中Ga被稀土元素Gd替代以及与邻近N或Ga空位组成的缺陷复合体的晶格常数、磁矩、形成能以及电子结构等性质.结果发现,Gd掺杂GaN后禁带宽度变窄,由直接带隙半导体转为间接带隙半导体;单个Gd原子掺杂给体系引入大约7μB的磁矩;在Gd与Ga或N空位形成的缺陷复合体系中,N空位对引入磁矩贡献很小,大约0.1μB,Ga空位能引入约2μB的磁矩.随着Ga空位的增多,体系总磁矩增加,但增加量与Ga空位的位置分布密切相关.当Ga空位分布较为稀疏时,Gd单原子磁矩受影响较小,但当Ga空位距离较近且倾向于形成团簇时,Gd单原子磁矩明显增加,而且这种情况下空位形成能也最小.  相似文献   

2.
氧、硫掺杂六方氮化硼单层的第一性原理计算   总被引:1,自引:0,他引:1       下载免费PDF全文
张召富  周铁戈  左旭 《物理学报》2013,62(8):83102-083102
采用基于密度泛函理论和投影缀加平面波的第一性原理计算方法, 研究了六方氮化硼单层(h-BN)中的氮原子缺陷(VN)、氧原子取代氮原子(ON)和硫原子取代氮原子(SN)时的几何结构、磁性性质和电子结构.研究发现, VN和ON体系形变较小, 而SN体系形变较大; h-BN本身无磁矩, 但具有N缺陷或者掺杂后总磁矩都是1 μB; 同时给出了态密度和能带结构.利用掺杂体系的局域对称性和分子轨道理论解释了相关结果, 尤其是杂质能级和磁矩的产生. 关键词: 六方BN单层 第一性原理计算 密度泛函理论 分子轨道理论  相似文献   

3.
谭兴毅  王佳恒  朱祎祎  左安友  金克新 《物理学报》2014,63(20):207301-207301
基于密度泛函理论的第一性原理平面波赝势方法,研究了二维黑磷中的碳原子(C P)、氧原子(C P)、硫原子(S P)掺杂的几何结构、磁学性质和电子结构.发现掺杂体系结构稳定,C P和O P体系形变较大,而S P体系形变较小;二维黑磷本身无磁矩,掺杂后都具有1μB的总磁矩.由于掺杂体系具有稳定的铁磁性,使其在自旋电子器件方面可发挥重要的作用.  相似文献   

4.
采用基于密度泛函理论(DFT)的第一性原理计算方法,系统研究了12×12的六方氮化硼单层(h-BNS)有序缺陷和无序缺陷对体系几何结构、电子结构和磁性性质的影响,并与理想的h-BNS、一个B原子缺陷体系(VB)、一个N原子缺陷体系(VN)进行比较. 研究发现:缺陷周围原子位置发生明显改变;硼原子缺陷体系的费米能级向下移动而氮原子缺陷体系的费米能级向上移动,并且硼原子缺陷体系费米能级的相对移动比氮原子缺陷体系费米能级的相对移动大;h-BNS本身没有磁矩,但缺陷体系都有磁矩,其中VB 和VN体系的总磁矩为1μB,其余的有序和无序缺陷体系的总磁矩也都不为零且B原子缺陷体系的总磁矩明显大于N原子缺陷体系的总磁矩。  相似文献   

5.
采用基于密度泛函理论(DFT)的第一性原理计算方法,系统研究了12×12的六方氮化硼单层(h-BNS)有序缺陷和无序缺陷对体系几何结构、电子结构和磁性性质的影响,并与理想的h-BNS、一个B原子缺陷体系(V_B)、一个N原子缺陷体系(V_N)进行对比.研究发现:缺陷周围原子位置发生明显改变;硼原子缺陷体系的费米能级向下移动而氮原子缺陷体系的费米能级向上移动,并且硼原子缺陷体系费米能级的相对移动比氮原子缺陷体系费米能级的相对移动大;h-BNS本身没有磁矩,但缺陷体系都有磁矩,其中V_B和V_N体系的总磁矩为1μB,其余的有序和无序缺陷体系的总磁矩也都不为零且B原子缺陷体系的总磁矩明显大于N原子缺陷体系的总磁矩.  相似文献   

6.
采用基于密度泛函理论(DFT)的第一性原理计算方法,系统研究了12×12的六方氮化硼单层(h-BNS)有序缺陷和无序缺陷对体系几何结构、电子结构和磁性性质的影响,并与理想的h-BNS、一个B原子缺陷体系(VB)、一个N原子缺陷体系(VN)进行比较. 研究发现:缺陷周围原子位置发生明显改变;硼原子缺陷体系的费米能级向下移动而氮原子缺陷体系的费米能级向上移动,并且硼原子缺陷体系费米能级的相对移动比氮原子缺陷体系费米能级的相对移动大;h-BNS本身没有磁矩,但缺陷体系都有磁矩,其中VB 和VN体系的总磁矩为1μB,其余的有序和无序缺陷体系的总磁矩也都不为零且B原子缺陷体系的总磁矩明显大于N原子缺陷体系的总磁矩。  相似文献   

7.
魏哲  袁健美  李顺辉  廖建  毛宇亮 《物理学报》2013,62(20):203101-203101
基于密度泛函理论的第一性原理计算, 研究了含B原子空位(VB), N原子空位(VN), 以及含B–N键空位 (VB+N)缺陷的二维氮化硼(h-BN)的电子和磁性质. 在微观结构上, VB体系表现为在空位附近的N原子重构成等腰三角形, VN体系靠近空穴的B 原子形成等边三角形, VB+N体系靠近空穴处的B和N原子在h-BN平面上重构为梯形. 三种空位缺陷都使h-BN的带隙类型从直接带隙转变为间接带隙. VB体系的总磁矩为1.0 μB, 磁矩全部由N原子贡献. 其中空穴周围的三个N原子磁矩方向不完全一致, 存在着铁磁性和反铁磁性两种耦合方式. 对于VN 体系, 整个晶胞内的总磁矩也为1.0 μB, 磁矩在空穴周围区域呈现一定的分布. 关键词: 二维h-BN 空位 电子结构 磁性  相似文献   

8.
为了研究Co对单层MoS_2电子结构和磁性的影响,本文基于第一性原理,采用数值基组的方法计算了Co吸附式掺杂、Co替代式掺杂单层MoS_2的能带结构、态密度以及分析了其结构的稳定性.结果发现:Co替换式掺杂体系的形成能较低,实验上容易实现;Co在Mo位吸附的稳定性强于在S位吸附;Mo位吸附体系的总磁矩为0.999μB,其磁矩的主要来源于Co原子的吸附所贡献的0.984μB,Co原子的掺杂体系总磁矩为1.029μB,其磁矩的主要由Co原子替代掉一个Mo原子所贡献的磁矩为0.9444μB,相比于吸附体系,Co原子对磁矩的贡献率有所降低;无论是Co吸附在单层MoS_2表面还是Co直接替代掉Mo原子的掺杂体系,Co原子3d轨道的引入是引起单层MoS_2体系磁性的主要原因.  相似文献   

9.
氮原子掺杂石墨烯对基于石墨烯的器件和催化研究具有重要的应用价值.本文采用基于密度泛函理论的计算方法,研究了氮原子修饰的C-Bridge(碳原子吸附在石墨烯碳碳键桥位)、C-Top(碳原子吸附在石墨烯一个碳原子上方)和C7557(碳原子对吸附在石墨烯碳环上方)三种不同点缺陷类型的石墨烯物理性质.讨论不同缺陷石墨烯结构在用氮原子进行修饰前后体系的稳定性、电子结构等;计算得到了缺陷处原子的分波态密度(PDOS)图,分析了原子间的相互作用;模拟出氮原子修饰后缺陷石墨烯恒流模式的STM图像,以便和实验上得出的图像进行对比.计算结果表明,对于所选取的三种不同缺陷,氮原子能够较稳定地吸附在缺陷表面.C-Bridge和C-Top缺陷结构本身具有磁矩,经氮原子修饰后结构磁矩消失.与之相反,C7557缺陷结构本身没有磁矩,经氮原子修饰后缺陷体系带有磁矩.另外,C-Bridge和CTop两种不同缺陷结构石墨烯经过氮原子修饰后,体系几何结构变得完全一样.  相似文献   

10.
本文基于第一性原理方法,对非金属元素(N)与过渡金属元素(Mo, Ru, Rh, Pd)掺杂SnO2的电子结构和磁学性质进行计算分析.结果表明:形成能与过渡金属原子半径密切相关,随着过渡金属原子半径的增加,形成能在降低,其中N-Mo掺杂体系形成能最低,故该体系最容易掺杂形成;能带结构分析表明,由于掺杂体系自旋向上/向下杂质能级的数量和分布均不对称,掺杂体系均有磁性产生;进一步探究态密度可知,体系产生磁性的原因是过渡金属原子和N原子之间产生p-d轨道杂化,最外层电子轨道上的空位及单电子相互耦合所导致.结果表明,由于掺杂原子的引入,SnO2体系产生磁性,并且掺杂体系呈现亚铁磁性,其中N-Rh掺杂体系的磁性最好,其磁矩为1.88μB,有望成为良好的稀磁半导体材料.  相似文献   

11.
采用基于密度泛函理论(DFT)的第一性原理计算方法, 研究了5d过渡金属原子(Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg)取代AlN纳米管(AlNNTs)中的铝原子或氮原子时体系的几何结构、电子结构和磁性性质; 并且以理想AlN纳米管(AlNNTs)、Al缺陷体系(VAl)和N缺陷体系(VN)的结果作为对比. 研究发现: 5d 原子取代Al(Al5d)时体系的局域对称性接近于C3v, 但是取代N(N5d)时体系的局域对称性偏离C3v对称性较大; 当掺杂的5d元素相同时, Al5d的成键能比N5d的成键能大; 当掺杂体系相同时(Al5d或N5d), 其成键能基本上随着5d原子的原子序数的增大而降低; 掺杂体系中出现了明显的杂质能级, 给出了态密度等结果; 不同掺杂情况的磁矩不同, 总磁矩呈现出较强的规律性. 利用C3v对称性和分子轨道理论解释了过渡金属原子取代Al时杂质能级的产生和体系磁性的变化规律.  相似文献   

12.
采用基于密度泛函理论(DFT)的第一性原理计算方法, 研究了5d过渡金属原子(Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg)取代AlN纳米管(AlNNTs)中的铝原子或氮原子时体系的几何结构、电子结构和磁性性质; 并且以理想AlN纳米管(AlNNTs)、Al缺陷体系(VAl)和N缺陷体系(VN)的结果作为对比. 研究发现: 5d 原子取代Al(Al5d)时体系的局域对称性接近于C3v, 但是取代N(N5d)时体系的局域对称性偏离C3v对称性较大; 当掺杂的5d元素相同时, Al5d的成键能比N5d的成键能大; 当掺杂体系相同时(Al5d或N5d), 其成键能基本上随着5d原子的原子序数的增大而降低; 掺杂体系中出现了明显的杂质能级, 给出了态密度等结果; 不同掺杂情况的磁矩不同, 总磁矩呈现出较强的规律性. 利用C3v对称性和分子轨道理论解释了过渡金属原子取代Al时杂质能级的产生和体系磁性的变化规律.  相似文献   

13.
采用自旋密度泛函理论框架下的广义梯度近似(GGA+U)平面波超软赝势方法,构建了未掺杂纤锌矿GaN超胞、三种不同有序占位Mn双掺GaN,(Mn,Mg)共掺杂GaN以及存在空位缺陷的Mn掺杂GaN超胞模型,分别对所有模型的能带结构、电子态密度、能量以及光学性质进行了计算.计算结果表明:与纯的GaN相比,Mn掺杂GaN体系的体积略有增大,掺杂体系居里温度能够达到室温以上;随着双掺杂Mn-Mn间距的增大,体系总能量和形成能升高、稳定性下降、掺杂越难;(Mn,Mg)共掺杂并不能有效增大掺杂体系磁矩,也不能达到提高掺杂体系居里温度的作用;Ga空位缺陷和N空位缺陷的存在不利于Mn掺杂GaN形成稳定的铁磁有序.此外,Mn离子的掺入在费米能级附近引入自旋极化杂质带,正是由于费米能级附近自旋极化杂质带中不同电子态间的跃迁,介电函数虚部在0.6868eV附近、光吸收谱在1.25eV附近分别出现了一个较强的新峰.  相似文献   

14.
采用基于密度泛函理论(DFT)的第一性原理计算方法,研究了5d过渡金属原子(Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg)取代Al N纳米管(Al NNTs)中的铝原子或氮原子时体系的几何结构、电子结构和磁性性质;并且以理想Al N纳米管(Al NNTs)、Al缺陷体系(VAl)和N缺陷体系(VN)的结果作为对比.研究发现:5d原子取代Al(Al5d)时体系的局域对称性接近于C3v,但是取代N(N5d)时体系的局域对称性偏离C3v对称性较大;当掺杂的5d元素相同时,Al5d的成键能比N5d的成键能大;当掺杂体系相同时(Al5d或N5d),其成键能基本上随着5d原子的原子序数的增大而降低;掺杂体系中出现了明显的杂质能级,给出了态密度等结果;不同掺杂情况的磁矩不同,总磁矩呈现出较强的规律性.利用C3v对称性和分子轨道理论解释了过渡金属原子取代Al时杂质能级的产生和体系磁性的变化规律.  相似文献   

15.
利用基于密度泛函理论的平面波超软赝势法研究了N空位对Cu掺杂AlN的电子结构和磁学性质的影响.结果表明,与Cu最近邻的N原子更易失去形成N空位.N空位的引入减小了Cu掺杂AlN体系的半金属能隙;减弱了Cu及其近邻N原子的自旋极化的强度以及Cu3d与N2p轨道间的杂化,因而减小了体系的半金属铁磁性.因此,制备Cu掺杂AlN稀磁半导体时应尽可能地避免N空位的产生.  相似文献   

16.
由于量子限域效应和态密度的限制,石墨烯、硅烯等二维材料的量子电容在费米能级附近趋近于零.基于密度泛函理论的第一性原理研究发现,掺杂和吸附使石墨烯等二维电极材料的电子结构得以有效的调制,它促进狄拉克点附近局域电子态的形成和/或费米能级的移动,从而使量子电容得到了提高.比较Ti (Au, Ag,Cu, Al)和3-B (N, P, S)掺杂单空位石墨烯(硅烯,锗烯)的量子电容,发现3-N掺杂单空位石墨烯和Ti原子吸附单空位硅烯、锗烯的量子电容明显得到了提升,量子电容分别为118.42μF/cm2, 79.84μF/cm2和76.54μF/cm2.另外还研究了3-N掺杂三种烯类的浓度效应,随掺杂浓度的增加,量子电容呈增加趋势.通过研究各掺杂体系的热力学稳定性问题,发现Ti是最稳定的吸附原子,因为Ti和C原子之间可以形成强键.在B, N, P, S掺杂单空位硅烯和锗烯中, S是最稳定的掺杂原子,而对于石墨烯, N掺杂的形成能最低,量子电容最高.上述二维电极材料的理论模拟计算为超级电容器和场效应晶体管中的实际应用做出了探索性的工作.  相似文献   

17.
采用基于密度泛函理论的第一性原理计算方法, 研究了氮化硼纳米管六元环中心吸附5d过渡金属原子后体系的几何结构, 电子结构和磁性性质. 研究发现, 吸附原子向一个氮原子或硼原子偏移; 吸附体系在费米能级附近出现明显的杂质能级; 各个体系的总磁矩随原子序数出现规律性变化, 局域磁矩主要分布在吸附原子上.  相似文献   

18.
基于密度泛函理论的平面波超软赝势方法模拟计算了金红石相TiO_2的四种本征缺陷(氧空位、钛空位、钛间隙缺陷、氧间隙缺陷)和两种复合缺陷(氧空位与氧间隙复合缺陷、钛空位与钛间隙复合缺陷)的铁磁特性.结合态密度、电子分布及晶体结构变化分析可知,四种本征缺陷均会在系统内引入缺陷态.氧空位、钛间隙缺陷使费米面升高,引起自旋极化,引入磁矩分别为1.62μB与3.91μB;钛空位的缺陷态处于价带顶,使费米面进入价带,表现出明显的p型半导体特性,引入磁矩约为2.47μB;氧间隙缺陷引入缺陷态但仍然处于自旋对称状态,费米面略微下降;氧空位与氧间隙复合缺陷使费米面上升的程度比单个氧空位时大,模拟的超晶胞保持了氧空位的铁磁特性,大小为1.63μB;钛空位与钛间隙复合缺陷以反铁磁方式耦合,但超晶胞仍具有一定的铁磁特性.  相似文献   

19.
采用基于密度泛函理论的第一性原理方法,研究了本征石墨烯和B掺杂的空位石墨烯吸附Na原子的电荷密度、吸附能、态密度、储存量以及电极电压.结果表明,两种石墨烯中,Na原子的最佳吸附位置都是H位.B掺杂的空位石墨烯对Na原子的吸附能是-2.08 eV,比本征石墨烯对Na原子的吸附能(-0.71eV)低很多.B掺杂的空位石墨烯中Na原子与B原子发生轨道杂化,本征石墨烯中没有杂化现象.B掺杂的空位石墨烯能够吸附12个Na原子,较本征石墨烯多.因此,B掺杂的空位石墨烯更适合储钠.  相似文献   

20.
采用基于密度泛函理论的第一性原理方法计算了存在Ga空位缺陷和掺杂B原子的二维GaAs的能带结构、态密度和光学性质.计算结果表明空位缺陷二维GaAs显示出金属特性,B原子的引入使体系变为间接带隙半导体,禁带宽度为0.35 eV.态密度计算发现体系低能带主要由Ga的s态、p态、d态和As的s态、p态构成;高能带主要由Ga和As的s态、p态构成.掺杂B原子与存在空位缺陷的二维GaAs相比,静态介电常数相对较低,变为8.42,且易于吸收紫外光,在3.90~8.63 eV能量范围具有金属反射特性,反射率达到52%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号