首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electroosmotic properties of agarose gels with low, medium, high and super high electroendosmosis (EEO) were evaluated based on the apparent electric field mediated mobility of a neutral, fluorescent marker under constant field strength using ultrathin-layer separation configuration. Electroosmotic flow mobility values were measured in different gel concentrations and also in the absence and the presence of various linear polymer additives. Under ultrathin-layer separation conditions, a slight decrease in electroosmotic flow mobility was observed with increasing agarose gel concentration of 1 to 3% for all agarose gels investigated. When linear polymer additives, such as linear polyacrylamide, hydroxyethyl cellulose or polyethylene oxide were added to 1% low electroendosmosis agarose gel, significant reduction of the electroosmotic flow properties were observed with increasing additive concentration. Effect of the intrinsic electroosmotic properties of the various electroendosmosis agaroses on the apparent mobilities and separation performance of double-stranded DNA fragments during automated ultrathin-layer agarose gel electrophoresis was also investigated.  相似文献   

2.
The effect of hydrophilic linear polymer additives (non-cross-linked polyacrylamide, hydroxyethyl cellulose and polyethylene oxide) on the migration behavior of double stranded DNA molecules, ranging from 200-1000 base pairs, were studied in ultra-thin-layer agarose gel electrophoresis. The detection sensitivity was found to be less than 0.1 ng/band using To-Pro-3 fluorophore labeling and fiber optic bundle-based scanning detection system with a 640 nm red diode laser. Among the various polymers investigated, addition of linear polyacrylamide resulted in the best separation performance (steepest Ferguson plots), while composite gels with hydroxyethylcellulose and polyethylene oxide still exhibited adequate resolving power. Using the composite matrices of 1% agarose-linear polyacrylamide (0.5-3%), 1% agarose-hydroxyethylcellulose (0.2-1%) and 1% agarose-polyethylene oxide (0.2-1%), the mechanism of the separation was found to be in the Ogston sieving regime. Activation energy curves were also plotted based on the slopes of the Arrhenius plots of the various composite matrices, and exhibited decreasing characteristics for the agarose-linear polyacrylamide composite matrix and increasing characteristics for the agarose-hydroxyethylcellulose and agarose-polyethylene oxide composite matrices.  相似文献   

3.
Maly IP  Crotet V  Toranelli M 《Electrophoresis》2003,24(14):2272-2276
This study describes an ultrathin-layer sodium dodecyl sulfate (SDS) disc electrophoresis in polyacrylamide gels of a thickness of only 150 microm. By use of 2-amino-2-methyl-1,3-propanediol/glycine instead of traditional Tris/HCl buffer in the resolving phase of the gel, proteins with a wide range of molecular sizes (10 kDa to over 220 kDa) are separated in unusually low-concentrated gels (4%T, 3.3%C). 2-Amino-2-methyl-1,3-propanediol in the resolving part of the gel contributes to stabilization of the pH value at 8.8, while glycine improves destacking as well as separation of small proteins from the bulk of stacked SDS. This method combines both the advantages of conventional slab-gel electrophoresis and capillary gel electrophoresis. It is easy to apply and well suited for all further miniaturization attempts.  相似文献   

4.
An ultra-fast analysis of proteins, based on sodium dodecyl sulfate (SDS)-mediated gel electrophoresis was developed, in which protein molecular mass standards ranging from Mr 14 200 to 94 700 were separated within 3 min. A 50 μm diameter uncoated fused-silica capillary column and a high field strength are used. The effects of the SDS concentration in the separation gel buffer and in the sample buffer on the resolution of protein test mixture were studied. The influence of the heat treatment of the sample prior analysis is also discussed.  相似文献   

5.
Sun G  Anderson VE 《Electrophoresis》2004,25(7-8):959-965
Prevention of artifactual protein oxidation occurring during sodium dodecyl sulfate (SDS) acrylamide gel electrophoresis is critical for identifying physiological protein oxidation implicated in human diseases due to the routine use of gel electrophoresis to separate the multiple proteins in proteomic studies. To develop a methodology that completely prevents artifactual protein oxidation in SDS acrylamide gel electrophoresis, cytochrome c was electrophoresed on polyacrylamide gels and subjected to trypsin in-gel digestion followed by tryptic peptide analysis by mass spectrometry. It was found that degassing the acrylamide solution to remove molecular oxygen prior to gel polymerization is a crucial process to protect the electrophoresed protein from reactive oxygen species generated during electrophoresis. However, significant artifactual protein oxidation remains that can only be eliminated entirely, if proteins are electrophoresed on an SDS gel photopolymerized with flavin as the photoinitiator and thioglycolate included in the cathode buffer as a reactive oxygen species scavenger. Using this combination of methodologies, cytochrome c isolated from adult rat heart mitochondria was purified and digested followed by mass spectrometric analysis, demonstrating the requisite high resolution of the polyacrylamide gel and the entire elimination of artifactual oxidation.  相似文献   

6.
Gel electrophoresis is one of the most frequently used tools for the separation of complex biopolymer mixtures. In recent years, there has been considerable activity in the separation and characterization of protein molecules by sodium dodecylsulfate (SDS) gel electrophoresis with particular interest in using this technique to separate on the basis of size and to estimate molecular mass and protein purity. Although the method is informative, it is cumbersome, time consuming and lacks automation. In this paper we report an automated, high-performance SDS gel electrophoresis system that is based on electric-field-mediated separation of SDS-protein complexes using an ultra-thin-layer platform. The integrated fiber optic bundle-based scanning laser-induced fluorescence detection technology readily provided high sensitivity, real-time detection of the migrating solute molecules. Rapid separations of covalently and non-covalently labeled proteins were demonstrated in the molecular mass range 14,000 to 205,000 in less than 9 and 16 min, respectively. Excellent quantitation and lane-to-lane migration time reproducibility were found for all the solute components using the multilane separation platform. The limit of detection was found to be 1.5-3 ng/band for both labeling methods, with excellent linearity over a six times serial double-dilution range. Molecular mass calibration plots were compared for both covalently and non-covalently labeled proteins. A linear relationship was found between the molecular mass and electrophoretic mobility in the case of covalently labeled samples, while a non-linear relationship was revealed for the non-covalently labeled samples.  相似文献   

7.
Substrate-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) has become a popular procedure for the separation and identification of active fractions present in enzyme mixtures due to its relative simplicity. Procedures including high-molecular-mass substrates within the gel, such as starch for identification of amylase activity, and protein substrates, including gelatin, casein, and collagen, for revealing protease activity, have been described. SDS-PAGE separation under denaturing conditions is dependent on the molecular mass of the proteins and on the effective pore size of the gels, the last factor being affected by the inclusion of high-molecular-mass substrates into the polyacrylamide matrix. In order to quantify the effect of the addition of increasing concentrations of such substrates on protein migration, starch, gelatin, and casein were included in gels in which polyacrylamide concentration was kept constant. High-molecular-mass substrates decreased migration of proteins ranging from 6.5 to 205 kDa, although the migration pattern, and thereby the accuracy of the assignation of relative molecular masses to proteins separated on those gels, was practically unaffected. The substitution of glycine, as the carrying ion, by Tricine in denaturing electrophoresis buffer systems resulted in an improvement of the migration of proteins in substrate-containing gels. Results suggested that zymograms including substrates remain a valuable procedure for the separation and the relative molecular mass assignation of active enzyme fractions.  相似文献   

8.
Ultrathin-layer agarose gel electrophoresis is a novel combination of the established methodologies of slab gel electrophoresis and capillary gel electrophoresis. This new format provides a multilane separation platform with rapid analysis time and excellent sensitivity by using laser-induced fluorescence scanning detection system. Sample injection onto the ultrathin-layer separation platform is easily accomplished by membrane mediated loading technology. In this paper, we demonstrate the sensitivity and high-throughput fashion of this novel separation and detection system for rapid genotyping of the coagulation factor V Leiden mutation by polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) analysis. The PCR amplified fragment from exon 10 of the factor V gene was digested by the Mnl I restriction enzyme, followed by automated ultrathin-layer agarose gel electrophoresis analysis with "in migratio" fluorescent labeling during the separation process. Due to its speed and automation, this method should be considered for large scale screening of factor V Leiden mutation.  相似文献   

9.
Proteins with relative molecular masses of 14,000 to 205,000 were separated by sodium dodecyl sulfate-capillary gel electrophoresis (SDS-CGE) using non-cross-linked linear polyacrylamide gels on both coated and uncoated fused-silica capillaries. It was determined that viscosity of the acrylamide solution was a major factor affecting column stability with linear acrylamide gels. When the viscosity of the acrylamide solution reaches 100 cP, electro-osmotically driven displacement of the gels is insignificant. Uncoated capillaries provided better resolution, stability, and reproducibility than surface coated capillaries when the concentration of linear polyacrylamide was greater than 4%. At lower gel concentrations, non-cross-linked polyacrylamide is easily displaced from the columns. A calibration plot of log molecular mass vs. mobility with non-linear polyacrylamide was linear, which indicated that resolution was equivalent to that obtained with cross-linked acrylamide. Separations with model proteins indicated that baseline resolution between protein species that vary 10% in molecular mass can be achieved.  相似文献   

10.
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis without a stacking gel minimizes lateral spreading of protein when samples are applied in agarose wells and allows high sample throughput (6 samples/cm gel width). The method is simple and convenient to use and gives comparable resolution to the standard method with 4-20% or 6-30% polyacrylamide gradient gels. Best results are obtained when the upper zone of the separating gel is of low polyacrylamide concentration. This indicates a need for the molten agarose to penetrate and anneal with the separating gel.  相似文献   

11.
Claeys D  Geering K  Meyer BJ 《Electrophoresis》2005,26(6):1189-1199
Two-dimensional (2-D) Blue Native/SDS gel electrophoresis combines a first-dimensional separation of monomeric and multimeric proteins in their native state with a second denaturing dimension. These high-resolution 2-D gels aim at identifying multiprotein complexes with respect to their subunit composition. We applied this method for the first time to analyze two human platelet subproteomes: the cytosolic and the microsomal membrane protein fraction. Solubilization of platelet membrane proteins was achieved with the nondenaturing detergent n-dodecyl-beta-D-maltoside. To validate native solubilization conditions, we demonstrated the correct assembly of the Na,K-ATPase, a functional multimeric transmembrane protein, when expressed in Xenopus oocytes. We identified 63 platelet proteins after in-gel tryptic digestion of 58 selected protein spots and liquid chromatography-coupled tandem mass spectrometry. Nine proteins were detected for the first time in platelets by a proteomic approach. We also show that this technology efficiently resolves several known membrane and cytosolic multiprotein complexes. Blue Native/SDS gel electrophoresis is thus a valuable procedure to analyze specific platelet subproteomes, like the membrane(-bound) protein fraction, by mass spectrometry and immunoblotting and could be relevant for the study of protein-protein interactions generated following platelet activation.  相似文献   

12.
Simultaneous electrophoresis of both native and Sodium dodecyl sulfate (SDS) proteins was observed on a single microchip within 20 min. The capillary array prevented lateral diffusion of SDS components and avoided cross contamination of native protein samples. The planar sputtered electrode format provided a more uniform distribution of separation voltage into each of the 36 parallel microchannel capillaries than platinum wire electrodes commonly used in conventional electrophoresis. The customized geometry of the stacking capillary machined into the cover plate of the microchip facilitated reproducible sample injection without the requirement for stacking gel. Polyimide served as a mask and facilitated insulation of the anode and cathode to prevent electrode lift off and deterioration during continuous electrophoresis, even at a constant current of 8 mA. Improved protein separation was observed during capillary electrophoresis at lower currents. Ferguson plot analysis confirmed the electrophoretic mobility of native globular proteins in accordance with their charge and size. Corresponding Ferguson plot analysis of SDS-associated proteins on the same chip confirmed separation of marker proteins according to their molecular weight.  相似文献   

13.
The previously reported fluorimetric detection of sodium dodecyl sulfate (SDS)-protein in the presence of cascade blue in agarose gel electrophoresis using barbital buffer was found to be equally feasible in the absence of the fluorescent marker and using Tris-Tricinate buffer, provided that SDS was loaded with the sample but not contained in the catholyte. That fluorescent detection is thought to be due to the formation of a moving boundary between leading SDS and trailing barbital, or Tricinate buffer. This hypothesis is supported by the following evidence: (i) The fluorometrically detected band disappears with addition of SDS to the catholyte; (ii) band area is proportional to protein and/or SDS load; (iii) mobility of SDS-proteins differing in mass is the same at agarose concentrations up to 3%; (iv) lowering of protein mobility by increase in gel concentration and/or increase in the size of the SDS-protein leads to band disappearance. Fluorescent detection of the band is like to be nonspecific and due to the light scattering properties of a stack comprising moving boundaries of any analytes with net mobilities intermediate between SDS (or micellar SDS) and the trailing buffer constituent at their regulated very high concentrations. The steady-state stack of SDS-proteins in the size range of 14.4-45.0 kDa, and the transient stack of an SDS-protein of 66.2 kDa have lent themselves to electroelution and characterization by mass of the proteins after removal of SDS and buffer exchange using matrix assisted laser desorption/ionization-time of flight (MALDI-TOF)-mass spectrometry. The possibility to form a stack of protein between leading SDS and trailing buffer anions under conditions of weak molecular sieving (open-pore gel and small-sized protein) contributes to the understanding of moving boundaries in gel electrophoresis, but in view of the narrowly defined conditions, under which this stack forms, is of limited practical significance for the gel electrophoresis of SDS-proteins.  相似文献   

14.
Nagata H  Tabuchi M  Hirano K  Baba Y 《Electrophoresis》2005,26(14):2687-2691
In this paper, we describe a method for size-based electrophoretic separation of sodium dodecyl sulfate (SDS)-protein complexes on a polymethyl methacrylate (PMMA) microchip, using a separation buffer solution containing SDS and linear polyacrylamide as a sieving matrix. We developed optimum conditions under which protein separations can be performed, using polyethylene glycol (PEG)-coated polymer microchips and electrokinetic sample injection. We studied the performance of protein separations on the PEG-coated PMMA microchip. The electrophoretic separation of proteins (21.5-116.0 kDa) was completed with separation lengths of 3 mm, achieved within 8 s on the PEG-coated microchip. This high-speed method may be applied to protein separations over a large range of molecular weight, making the PEG-coated microchip approach applicable to high-speed proteome analysis systems.  相似文献   

15.
Liu J  Yang S  Lee CS  DeVoe DL 《Electrophoresis》2008,29(11):2241-2250
In situ photopolymerized polyacrylamide (PAAm) gel plugs are used as hydrodynamic flow control elements in a multidimensional microfluidic system combining IEF and parallel SDS gel electrophoresis for protein separations. The PAAm gel plugs offer a simple method to reduce undesirable bulk flow and limit reagent/sample crosstalk without placing unwanted constraints on the selection of separation media, and without hindering electrokinetic ion migration in the complex microchannel network. In addition to improving separation reproducibility, the discrete gel plugs integrated into critical regions of the chip enable the use of a simple pressure-driven sample injection method which avoids electrokinetic injection bias. The gel plugs also serve to greatly simplify operation of the spatially multiplexed system by eliminating the need for complex external fluidic interfaces. Using an FITC-labeled Escherichia coli cell lysate as a model system, the use of gel plugs is shown to significantly enhance separation reproducibility in a chip containing five parallel CGE channels, with an average variance in peak elution time of only 4.1%.  相似文献   

16.
Lin QH  Cheng YQ  Dong YN  Zhu Y  Pan JZ  Fang Q 《Electrophoresis》2011,32(20):2898-2903
In this study, we developed a picoliter-scale partial translational spontaneous injection approach which is suitable for high-speed protein separation under sodium dodecyl sulfate-capillary gel electrophoresis mode. On the basis of this approach, we built a high-speed CE system for protein separation based on a short capillary and slotted-vial array. The system has the advantages of simple structure, ease of building without the requirement of microfabricated devices, convenient operation, and low cost. Under the optimized conditions, picoliter-scale sample plugs (corresponding to ~65?μm plug length) were obtained, which ensured both the high speed and the high efficiency in protein separation. Five fluorescein isothiocyanate labeled proteins including myoglobin, egg albumin, bovine serum albumin, phosphorylase b, and myosin were separated within 60?s with an effective separation length of 1.5?cm. Theoretical plates per meter ranging from 2.58×10? to 1.28×10? (corresponding to 0.78-3.88?μm plate height) were obtained. The separation speed and separation efficiency of the present system are comparable to those of most microchip-based capillary electrophoresis systems for protein separation. The relative standard deviations of the migration times were in the range of 0.9-1.3% (n=5). Good linear relationships between log relative molecular mass and migration time were obtained in the molecular weigh range of 17,200-500,000, which demonstrate the present system can be applied in protein relative molecular mass determination.  相似文献   

17.
A new protocol for conducting two-dimensional (2D) electrophoresis was developed by combining the recently developed agarose native gel electrophoresis with either vertical sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) or flat SDS agarose gel electrophoresis. Our innovative technique utilizes His/MES buffer (pH 6.1) during the first-dimensional (1D) agarose native gel electrophoresis, which allows for the simultaneous and clear visualization of basic and acidic proteins in their native states or complex structures. Our agarose gel electrophoresis is a true native electrophoresis, unlike blue native–PAGE, which relies on the intrinsic charged states of the proteins and their complexes without the need for dye binding. In the 2D, the gel strip from the 1D agarose gel electrophoresis is soaked in SDS and placed on top of the vertical SDS–PAGE gels or the edge of the flat SDS–MetaPhor high-resolution agarose gels. This allows for customized operation using a single electrophoresis device at a low cost. This technique has been successfully applied to analyze various proteins, including five model proteins (BSA, factor Xa, ovotransferrin, IgG, and lysozyme), monoclonal antibodies with slightly different isoelectric points, polyclonal antibodies, and antigen–antibody complexes, as well as complex proteins such as IgM pentamer and β-galactosidase tetramer. Our protocol can be completed within a day, taking approximately 5–6 h, and can be expanded further into Western blot analysis, mass spectrometry analysis, and other analytical methods.  相似文献   

18.
Twelve enzymes from mature pollen grains of maize were separated by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). The separation in the second dimension was both in the presence and absence of sodium dodecyl sulfate (SDS). Ten of the investigated enzymes lost activity after separation in the presence of SDS, but those of esterases and acid phosphatase could be recovered. On the other hand, 2-D electrophoresis without SDS is suitable for the analysis of maize pollen pectinesterase, malate dehydrogenase, glutamic-oxalacetic transaminase, diaphorase, superoxide dismutase, and phosphoglucose isomerase. 1-D PAGE and isoelectric focusing (IEF) are sufficient to analyze glucose-6-phosphate dehydrogenase, alcohol dehydrogenase, shikimic dehydrogenase, and glutamate dehydrogenase. The possibility of applying 2-D electrophoresis for the analysis of enzymes from single stigma and stigma exudate is dicussed.  相似文献   

19.
An improved method, based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for detection of amylase activity is described. This method will allow better characterization of certain amylases than that obtained by the Davis technique. The main features of the technique are: (i) identification of amylase bands and molecular mass determination are possible in the same gel; (ii) the hydrolysis of copolymerized substrate during electrophoretic separation is prevented using very low temperatures instead of inactivating agents such as chelating agents; and (iii) the technique is applicable to reveal amylase activity in a wide range of biological samples. The method is not useful for enzymes sensitive to SDS and for high molecular mass amylases.  相似文献   

20.
We have developed novel protein gel electrophoresis techniques, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and isoelectric focusing (IEF) in short microchannels (approximately millimeters) that take less than a minute. A photopatterning technique was used to cast in situ crosslinked polyacrylamide gel in a microchannel to perform SDS-PAGE. A fluorescent protein marker sample (Mr range of 20,000-200,000) was separated in less than 30 s in less than 2 mm of channel length. Crosslinked polyacrylamide gel, patterned in channels using UV light, provides higher sieving power and sample stacking effect, therefore yielding faster and higher-resolution separation in a chip. IEF of proteins was also achieved in a microchannel, and several proteins were focussed within tens of seconds in mm-length channels. As resolution in IEF is independent of separation distance, focusing in ultra-short channels results in not only faster separation but also more concentrated bands potentially allowing detection of low-concentration species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号