首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 682 毫秒
1.
In this paper, the problem of a crack embedded in a half-plane piezoelectric solid with traction-induction free boundary is analyzed. A system of singular integral equations is formulated for the materials with general anisotropic piezoelectric properties and for the crack with arbitrary orientation. The kernel functions developed are in complex form for general anisotropic piezoelectric materials and are then specialized to the case of transversely isotropic piezoelectric materials which are in real form. The obtained coupled mechanical and electric real kernel functions may be reduced to those kernel functions for purely elastic problems when the electric effects disappear. The system of singular integral equations is solved numerically and the coupling effects of the mechanical and electric phenomena are presented by the generalized stress intensity factors for transversely isotropic piezoelectric materials.  相似文献   

2.
The problem of an antiplane crack situated in the interface of two bonded dissimilar graded piezoelectric half-spaces is considered under the permeable crack assumption. The mechanical and electrical properties of the half-spaces are considered for a class of functional forms for which the equilibrium equation has analytic solutions. By using an integral transform technique, the problem is reduced to dual integral equations which are transformed into a Fredholm integral equation by introducing an auxiliary function. The stress intensity factors are obtained in explicit form in terms of auxiliary functions. By solving the Fredholm integral equation numerically, the numerical results for stress intensity factors are obtained which have been displayed graphically to show the influence of the graded piezoelectric materials.  相似文献   

3.
We consider the problem of determining the singular stresses and electric fields in a piezoelectric ceramic strip containing an eccentric Griffith crack off the centre line bonded to two elastic half planes under anti-plane shear loading using the continuous crack-face condition. Fourier transforms are used to reduce the problem to the solution of two pairs of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. Numerical values on the stress intensity factor and energy release rate are obtained.  相似文献   

4.
The assumptions of impermeable and permeable cracks give rise to significant errors in determining electro-elastic behavior of a cracked piezoelectric material. The former simply imposes that the permittivity or electric displacement of the crack interior vanishes, and the latter neglects also the effects of the dielectric of an opening crack interior. Considering the presence of the dielectric of an opening crack interior and the permeability of the crack surfaces for electric field, this paper analyzes electro-elastic behavior induced by a penny-shaped dielectric crack in a piezoelectric ceramic layer. In the cases of prescribed displacement or prescribed stress at the layer surfaces, the Hankel transform technique is employed to reduce the problem to Fredholm integral equations with a parameter dependent nonlinearly on the unknown functions. For an infinite piezoelectric space, a closed-form solution can be derived explicitly, while for a piezoelectric layer, an iterative technique is suggested to solve the resulting nonlinear equations. Field intensity factors are obtained in terms of the solution of the equations. Numerical results of the crack opening displacement intensity factors are presented for a cracked PZT-5H layer and the effect of applied electric field on crack growth are examined for both cases. The results indicate that the fracture toughness of a piezoelectric ceramic is affected by the direction of applied electric fields, dependent on the elastic boundary conditions.  相似文献   

5.
The problem of a penny-shaped interface crack between a functionally graded piezoelectric layer and a homogeneous piezoelectric layer is investigated. The surfaces of the composite structure are subjected to both mechanical and electrical loads. The crack surfaces are assumed to be electrically impermeable. Integral transform method is employed to reduce the problem to a Fredholm integral equation of the second kind. The stress intensity factor, electric displacement intensity factor and energy release rate are derived, some typical numerical results are plotted graphically. The effects of electrical loads, material nonhomogeneity and crack configuration on the fracture behaviors of the cracked composite structure are analyzed in detail.  相似文献   

6.
圆形域多圆孔多裂纹反平面问题研究   总被引:3,自引:0,他引:3  
陆建飞  沈为平 《力学季刊》1998,19(4):360-366
本文运用复变函数及积分方程方法,求解了圆形域多圆孔多裂纹反平面问题,建立了两种类型的基本解。复叠加原理和所得的基本解并沿国圆孔和裂纹表面取待定的基本解密度函数,可得到一组以基本解密度函数为未知函数的Fredholm积分方程。通过该积分方程组的数值可以得到密度函数的离散值,进而得到了裂纹尖端的应力强度因子。  相似文献   

7.
In this paper, the problem of a subinterface crack in an anisotropic piezoelectric bimaterial is analyzed. A system of singular integral equations is formulated for general anisotropic piezoelectric bimaterial with kernel functions expressed in complex form. For commonly used transversely isotropic piezoelectric materials, the kernel functions are given in real forms. By considering special properties of one of the bimaterial, various real kernel functions for half-plane problems with mechanical traction-free or displacement-fixed boundary conditions combined with different electric boundary conditions are obtained. Investigations of half-plane piezoelectric solids show that, particularly for the mechanical traction-free problem, the evaluations of the mechanical stress intensity factors (electric displacement intensity factor) under mechanical loadings (electric displacement loading) for coupled mechanical and electric problems may be evaluated directly by considering the corresponding decoupled elastic (electric) problem irrespective of what electric boundary condition is applied on the boundary. However, for the piezoelectric bimaterial problem, purely elastic bimaterial analysis or purely electric bimaterial analysis is inadequate for the determination of the generalized stress intensity factors. Instead, both elastic and electric properties of the bimaterial’s constants should be simultaneously taken into account for better accuracy of the generalized stress intensity factors.  相似文献   

8.
胡克强  仲政  金波 《力学季刊》2003,24(3):371-378
基于三维弹性理论和压电理论,对材料系数按指数函数规律分布的功能梯度压电板条中的反平面运动裂纹问题进行了求解。利用Fourier积分变换方法将电绝缘型运动裂纹问题化为对偶积分方程,并进一步归结为易于求解的第二类Fredholm积分方程。通过渐近分析,获得了裂纹尖端应力、应变、电位移和电场的解析解,给出了裂纹尖端场各个变量的角分布函数,并求得了裂纹尖端场的强度因子,分析了压电材料物性梯度参数、几何尺寸及裂纹运动速度对它们的影响。结果表明,对于电绝缘型裂纹,功能梯度压电板条中运动裂纹尖端附近的各个场变量都具有-1/2阶的奇异性;当裂纹运动速度增大时,裂纹扩展的方向会偏离裂纹面。  相似文献   

9.
Summary  In a hybrid laminate containing an interfacial crack between piezoelectric and orthotropic layers, the dynamic field intensity factors and energy release rates are obtained for electro-mechanical impact loading. The analysis is performed within the framework of linear piezoelectricity. By using integral transform techniques, the problem is reduced to the solution of a Fredholm integral equation of the second kind, which is obtained from one pair of dual integral equations. Numerical results for the dynamic stress intensity factor show the influence of the geometry and electric field. Received 29 June 2001; accepted for publication 3 December 2001  相似文献   

10.
An analysis is performed for the problem of a finite Griffith crack moving with constant velocity along the interface of a two-layered strip composed of a piezoelectric ceramic and an elastic layers. The combined out-of-plane mechanical and in-plane electrical loads are applied to the strip. Fourier transforms are used to reduce the problem to a pair of dual integral equations, which is then expressed in terms of a Fredholm integral equation of the second kind. The dynamic stress intensity factor(DSIF) is determined, and numerical results show that DSIF depends on the crack length, the ratio of stiffness and thickness, and the magnitude and direction of electrical loads as well as the crack speed. In case that the crack moves along the interface of piezoelectric and elastic half planes, DSIF is independent of the crack speed.  相似文献   

11.
余迎松  秦太验 《力学与实践》2005,27(3):40-42,72
采用Somigiliana公式给出了三维横观各向同性压电材料中的非渗漏裂纹问题的一般解和超奇异积分方程,其中未知函数为裂纹面上的位移间断和电势间断.在此基础上,使用有限部积分和边界元结合的方法,建立了超奇异积分方程的数值求解方法,并给出了一些典型数值算例的应力强度因子和电位移强度因子的数值结果,结果令人满意.  相似文献   

12.
Using the hypersingular integral equation method based on body force method, a planar crack in a three-dimensional transversely isotropic piezoelectric solid under mechanical and electrical loads is analyzed. This crack problem is reduced to solve a set of hypersingular integral equations. Compare with the crack problems in elastic isotropic materials, it is shown that for the impermeable crack, the intensity factors for piezoelectric materials can be obtained from those for elastic isotropic materials. Based on the exact analytical solution of the singular stresses and electrical displacements near the crack front, the numerical method of the hypersingular integral equation is proposed by the finite-part integral method and boundary element method, which the square root models of the displacement and electric potential discontinuities in elements near the crack front are applied. Finally, the numerical solutions of the stress and electric field intensity factors of some examples are given.  相似文献   

13.
基于线性压电理论,本文获得了含有中心反平面裂纹的矩形压电体中的奇异应力和电场。利用Fourier积分变换和Fourier正弦级数将电绝缘型裂纹问题化为对偶积分方程,并进一步归结为易于求解的第二类Fred-holm积分方程。获得了裂纹尖端应力、应变、电位移和电场的解析解,求得了裂纹尖端场的强度因子及能量释放率。分析了压电矩形体的几何尺寸对它们的影响。结果表明,对于电绝缘型裂纹,裂纹尖端附近的各个场变量都具有-1/2阶的奇异性,能量释放率与电荷载的方向及大小有关,并且有可能为负值。  相似文献   

14.
In this paper a moving mode-III crack in functionally graded piezoelectric materials (FGPM) is studied. The crack surfaces are assumed to be permeable. The governing equations for FGPM are solved by means of Fourier cosine transform. The mathematical formulation for the permeable crack condition is derived as a set of dual integral equations, which, in turn, are reduced to a Fredholm integral equation of the second kind. The results obtained indicate that the stress intensity factor of moving crack in FGPM depends only on the mechanical loading. The gradient parameter of the FGPM and the moving velocity of the crack do have significant influence on the dynamic stress intensity factor.  相似文献   

15.
The dynamic theory of antiplane piezoelectricity is applied to solve the problem of a line crack subjected to horizontally polarized shear waves in an arbitrary direction. The problem is formulated by means of integral transforms and reduced to the solution of a Fredholm integral equation of the second kind. The path-independent integral G is extended here to include piezoelectric effects, and is evaluated at the crack tip to obtain the dynamic energy release rate. Numerical calculations are carried out for the dynamic stress intensity factor and energy release rate. The material is piezoelectric ceramic.  相似文献   

16.
The behavior of a Mode-Ⅰinterface crack in piezoelectric materials was investigated under the assumptions that the effect of the crack surface overlapping very near the crack tips was negligible. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations. To solve the dual integral equations, the jumps of the displacements across the crack surfaces were expanded in a series of Jacobi polynomials. It is found that the stress and the electric displacement singularities of the present interface crack solution are the same as ones of the ordinary crack in homogenous materials. The solution of the present paper can be returned to the exact solution when the upper half plane material is the same as the lower half plane material.  相似文献   

17.
The behavior of two parallel non-symmetric cracks in piezoelectric materials subjected to the anti-plane shear loading was studied by the Schmidt method for the permeable crack electric boundary conditions. Through the Fourier transform, the present problem can be solved with two pairs of dual integral equations ip which the unknown variables are the jumps of displacements across crack surfaces. To solve the dual integral equations, the jumps of displacements across crack surfaces were directly expanded in a series of Jacobi polynomials. Finally, the relations between electric displacement intensity factors and stress intensity factors at crack tips can be obtained. Numerical examples are provided to show the effect of the distance between two cracks upon stress and electric displacement intensity factors at crack tips. Contrary to the impermeable crack surface condition solution, it is found that electric displacement intensity factors for the permeable crack surface conditions are much smaller than those for the impermeable crack surface conditions. At the same time, it can be found that the crack shielding effect is also present in the piezoelectric materials.  相似文献   

18.
In this paper, the basic solutions of two parallel mode-I cracks or four parallel mode-I cracks in the piezoelectric materials were investigated by means of the Schmidt method for the limited-permeable electric boundary conditions. The electric permittivity of air in the crack was considered. Through the Fourier transform, the problems can be solved with the help of two pairs of dual integral equations, in which the unknown variables were the jumps of the displacements across the crack surfaces, not the dislocation density functions. To solve the dual integral equations, the jumps of the displacements across the crack surfaces were directly expanded in a series of Jacobi polynomials. Finally, the effects of the distance between two parallel cracks, the distance between two collinear cracks and the electric boundary conditions on the stress and the electric intensity factors in the piezoelectric materials are analyzed. These results can be used for the strength evaluation of the piezoelectric materials with multi-cracks. The crack shielding effect is also present in the piezoelectric materials.  相似文献   

19.
Following the theory of linear piezoelectricity, we consider the electro-elastic problems of a finite crack in a functionally gradient piezoelectric ceramic strip. By the use of Fourier transforms we reduce the problem to solving two pairs of dual integral equations. The solution to the dual integral equations is then expressed in terms ofa Fredholm integral equation of the second kind. Numerical calculations are carried out for piezoelectric ceramics. The electric field intensity factors and the energy release rate are shown graphically, and the electroelastic interactions are illustrated.  相似文献   

20.
Following the theory of linear piezoelectricity,we consider the electro-elastic prob-lems of a finite crack in a functionally gradient piezoelectric ceramic strip.By the use of Fouriertransforms we reduce the problem to solving two pairs of dual integral equations.The solution tothe dual integral equations is then expressed in terms of a Fredholm integral equation of the secondkind.Numerical calculations are carried out for piezoelectric ceramics.The electric field intensityfactors and the energy release rate are shown graphically,and the electroelastic interactions areillustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号